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Abstract

Network processors (NPs) are programmable devices with special architectural features that are optimized to

perform packet-processing functions. They have emerged to cope with the ever-changing networking applications that

are becoming increasingly complex. NPs are expected to become the silicon core of network equipments that require a

high degree of flexibility to support evolving network services at extraordinary performance with high packet rates. In

this paper, we present and examine various NP architectural aspects. We describe and compare NP design charac-

teristics and analyze their implications on the ease of programming.
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1. Introduction

The quest for intelligent and flexible packet

processing at high speeds has led to the creation of

network processors (NPs). NPs are becoming the

silicon core of network equipments that require a

high degree of flexibility to support evolving net-

work services at extraordinary performance with
high packet rates [4]. Whereas in the past net-

working equipments were based either on general-

purpose processors (GPPs) or application specific

integrated circuits (ASICs), favoring flexibility

over speed or vice versa, the NP approach achieves

both flexibility and performance. The key advan-

tage of NPs is that hardware-level performance is

complemented by flexible software.

NPs are programmable devices with special

architectural features that are optimized for pac-

ket processing. They are designed to perform the

common networking functions above the physical

layer. From a functionality point of view, network

processing can be divided into two general cate-
gories: control-plane and data-plane (Fig. 1). Each

category has different characteristics and perfor-

mance requirements.

Typical control-plane protocols are not perfor-

mance-critical and have modest performance re-

quirements. Examples of control-plane protocols

include the resource reservation protocol (RSVP)

which is used to allocate resources in routers for IP
flows and the open shortest path first (OSPF)

protocol which is used to establish and update

routing tables. Control plane protocols are best

*Corresponding author. Tel.: +1-919-254-7576.

E-mail address: peyravn@us.ibm.com (M. Peyravian).

1389-1286/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S1389-1286(02)00451-6

Computer Networks 41 (2003) 587–600

www.elsevier.com/locate/comnet

mail to: peyravn@us.ibm.com


suited for GPPs since they have long code paths

and exhibit little data parallelism. Control-plane

processors (such as PowerPC) are used to process

control packets which help in performing data-

plane functions. The control plane processor is

also in charge of the overall system management.

Data-plane protocols are responsible for for-
warding packets. IP-packet and ATM-cell for-

warding are examples of data-plane protocol

processing. Data-plane processing is performance-

critical since it must be performed at high speed to

avoid dropping packets and to meet quality of

service (QoS) requirements. Data-plane protocols

are best suited for parallel processors since they

have short code paths and exhibit large data par-
allelism. Most NPs are optimized to implement

data-plane packet processing functions.

The distinction between data- and control-plane

protocols becomes blurry as one moves up the pro-

tocol stack. For example, the transport control

protocol (TCP), a layer 4 protocol which provides

a reliable communication path for higher layer pro-

tocols, exhibits both data- and control-plane func-
tions and has a rather long code path. This along

with the evolving deep-packet processing require-

ments make designing flexible and cost-effective

NPs suitable for layers 2–7 processing an increas-

ingly challenging task.

In the following sections we present various

aspects of NP architectures and programming

models. We also discuss the overall NP connec-

tivity and the role of its external interfaces which

dictate how well it can be integrated with the other

system components.

2. Network processor architecture

NPs use parallel processing to take advantage

of the data parallelism present in packet streams.

They employ multiple processing engines (PEs)

to perform packet-processing tasks concurrently.
Various aspects of NP architecture are discussed in

the following sections.

2.1. Parallel and pipelined models

From the architecture and programming point

of view, NP designs can be divided into two basic

types: Parallel and pipelined as shown in Fig. 2.
The PE in the parallel model is typically a scaled-

down RISC-based architecture with some special

bit-manipulation instructions suitable for packet

processing. We refer to this type of PE as a gen-

eral-purpose processing engine. PEs are generally

simple and do not have complicated arithmetic,

floating-point or numerous addressing modes.

They typically have small instruction caches and
also small data caches since most data is not re-

used between packets. Many PEs can fit on a single

chip since they are small. IBM�s PowerNP NP is

an example of the parallel model [8].

The Task Scheduler is responsible for assigning

packets, as they arrive, to the PEs. The Task

Scheduler is either hardwired, configurable or

programmable. 1 It reads part of the packet header
and dispatches it to a PE as soon as one becomes

available. The Task Scheduler is also responsible

for preserving packet sequence. Since packets be-

longing to the same flow may be dispatched to

multiple PEs, the Task Scheduler puts them in the
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Fig. 1. Network processing breakdown.

1 A processor-based Task Scheduler provides the ultimate

flexibility since it is programmable.
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proper order for transmission once they are pro-

cessed by PEs [6].

In the pipelined model the packet processing

task is divided into multiple stages and each stage

is designed to handle a certain category of task.

A packet is passed from one stage to the next

downstream stage as it is processed. Each pipeline
stage employs one or multiple PEs that may be

optimized for a specific task. We refer to this type

of PE as a task-oriented processing engine. Each

task-oriented PE is designed for a specific net-

working task and its instruction set is optimized

for that task. For example, one set of PEs might be

optimized to parse and classify the contents of

packets. Another set might be optimized to search
for matching the classification results with pre-

defined values, and so forth. The Ezchip�s NP-1

network processor is an example of the pipelined

model [8].

The parallel and pipelined models are the same

in terms of the total amount of processing that a

packet can receive, however in the parallel model

the processing budget for a PE is bigger and the
throughput requirement is lower. For example, at

10 Gbps line speed with a 50-byte packet, a new

packet arrives every 40 ns and there are 25 Mpps

(million packets per second) to process. 2 Assume

the parallel and pipelined model each has 16 PEs.

In the pipelined model, at each stage a single PE

can spend at most 40 ns processing each packet

and the packet can be processed for at most

16� 40 ¼ 640 ns. Additionally, each PE must also

have a minimum throughput of 25 Mpps. In the

parallel model, a single PE can process a packet

for a maximum of 16� 40 ¼ 640 ns and a PE
must have a minimum throughput of 25=16 ¼
1; 562; 500 pps.

The parallel and pipelined models can be used

as the base to build different variations of these

architectures such as the ones shown in Fig. 3.

Such models can be designed to be more adaptable

to varying application requirements. However

these models typically make the programming task
more challenging.

2.2. Memory organization

The NP memory holds three types of informa-

tion: instruction code, control data, and packets.

Each information type has different characteristics

and performance requirements. The instruction
code is stored in the instruction memory. The in-

struction code represents the application program

and runs on the PEs. High-speed SRAMs with

low-cycle access window are required for storing

instructions. 3 The instruction memory subsystem
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Fig. 2. Network processor base models: (a) parallel model, (b) pipelined model.

2 The 25 Mpps figure is for illustration purposes. Network

links are not utilized at 100%.

3 With current technology, a low-cycle embedded SRAM

can perform a read or write operation in 3 cycles.
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needs to be structured in such a way to be able to

feed all the PEs simultaneously. For NP hardware

initialization and bring up, a PROM is also re-

quired to hold the boot code.
The instruction memory can be internal to the

NP since it needs to hold a small amount of code.

Typical low-layer protocol processing requires

only on the order of a few kilobytes of code.

However, for deep-packet processing involving

higher-layer protocol translation and termination,

several hundred kilobytes of instruction memory

might be necessary.
Control data, including routing tables (e.g., IP

addresses) and session contexts (e.g., TCP session

information), is stored in the control memory.

Control data needs to be stored in high-speed

SRAMs. For protocol processing, several fields of

an incoming packet might be used for searching in

various tables containing policy, routing, and QoS

information. For example, the table searches may
involve: SA, DA, VLAN (of layer 2); IP address

(of layer 3); TCP session (of layer 4); SSL context

(of layer 5); URL (of layer 6) and so forth. The

control memory bandwidth and its access time are

critical factors in being able to sustain high-speed

packet processing since several table access per

packet are required. Storing tables in separate

memory cores allows simultaneous table access to
take place and yields better performance. De-

pending upon the type of protocol processing and

the number of routing entries or session contexts

to be supported, the control memory can range in

size from a few hundred kilobytes to 10�s of
megabytes. For example, to support 50 K SSL-

termination would require storing about 34

megabytes of context information (i.e., �500 bytes
per SSL context and �180 bytes per TCP context).

Packets are stored in the packet memory during

processing by the PEs. The packet memory sub-

system design depends upon several factors in-

cluding traffic characteristics (i.e., burst size,
packet size, etc.), wire speed and the type of packet

processing required (i.e., simple low-layer packet

processing or complex deep-packet processing in-

volving higher-layer protocols). For example, the

packet memory requirement for an implementa-

tion involving only IP-packet forwarding is sig-

nificantly different than another implementation

involving TCP termination. The packet memory
subsystem must provide sufficient bandwidth for

multiple accesses per packet to achieve high-speed

packet processing since each packet must be writ-

ten to the packet memory and read back at least

once. Additional packet memory accesses are re-

quired for reading packet data for processing and

writing modified packet data before transmission.

Large low-cost DRAMs used for packet memory
in most todays NPs are not sufficient for high-
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speed deep-packet processing. Significantly faster

memories with lower access times such as RLD-

RAMs or FCRAMs are better suited for high-

speed NPs.

Memory is a major bottleneck for high-speed

NPs––especially for deep-packet processing. Layer
4–7 protocol processing has significantly greater

performance demands on memory than Layer 2–3

protocol processing. Higher-layer protocol pro-

cessing involves reading and writing significantly

more data from and to memory. As a result, the

control and packet memories are heavily stressed.

The NP memory can be structured in three

ways: shared, distributed and hybrid as shown in
Fig. 4. The shared memory model suffers from

limitations because of its lack of scalability and

performance issues but it offers a simple pro-

gramming model. The distributed memory model

offers better scalability and increased performance

but is more difficult to program. The hybrid

model, a combination of shared and distributed

models, offers better scalability and performance

than the shared model and is simpler to program

than the distributed model [10].

In the hybrid model, PEs are partitioned into a

number of clusters each consisting of two or more
PEs. Within a cluster, PEs have shared memory.

PEs within a cluster may share instruction and

packet memories. To avoid inter-cluster memory

access for instruction code, the instruction code

can be replicated in all clusters. This provides a

single-image programming model since all the PEs

execute the same code. The Task Scheduler dis-

patches all packets belonging to a flow to the same
cluster to avoid inter-cluster memory access for

packets.

PEs within a cluster can also share control

memory since session context information is clus-

ter-specific and need not be shared across clusters.

This is because the Task Scheduler can dispatch all
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Fig. 4. Network processor memory models: (a) shared memory model, (b) distributed memory model, (c) hybrid memory model.
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packets belonging to a flow to the same cluster.

Route tables, however, need to be accessed by all

PEs. More frequently used small-size tables can be

replicated in the control memory of all clusters and

large-size tables can be stored in a shared control

memory accessible by all PEs.

2.3. Coprocessors

Hardwired or configurable coprocessors are

employed in conjunction with PEs to accelerate

common networking functions that are computa-

tionally intensive to perform in software. Copro-

cessors are typically shared among multiple PEs
and they are accessed via message passing, memory

map or special instructions. Typical functions per-

formed by coprocessors include packet classifica-

tion, table lookup and cryptographic functions.

A packet classification coprocessor parses a

packet and compares preconfigured values with

the values of the fields in the packet to determine if

the packet includes any of the preconfigured val-
ues. It then generates some labels, based on the

classification result, that are passed to a PE to

assist in processing the packet.

A table lookup coprocessor assists in perform-

ing table searches. The basic function of a lookup

coprocessor is to find the mapping value for a

given key. Lookup coprocessors might be im-

plemented using fixed-function CAMs or in
algorithmic-dependent fashion based on hash ta-

bles or tree-structures. CAMs are ineffective for

some entry types, have limited capacity and are

expensive. Hash tables are suitable for fixed-length

entries. Tree structures are suitable for variable-

length entries such as the longest prefix match of

IP addresses, URLs, etc. For example, in a tree-

search coprocessor, tables might be represented as
Patricia trees in which the termination of a search

results in the address of a leaf page. Hash- and tree-

based searches require multiple memory accesses.

Cryptographic functions are supported by

crypto coprocessors to assist with security proto-

cols such as IPSec and SSL. Crypto coprocessors

support symmetric-key encryption algorithms

(such as DES, TDES and AES), asymmetric-key
encryption algorithms (such as RSA, DH and

DSA), cryptographic hash algorithms (such as

MD5 and SHA-1) and compression algorithms

such as LZS.

A major aspect of defining an NP architecture

is component placement. A coprocessor can be

placed directly in the data-path, in a streaming

mode, or in a look-aside mode as shown in Fig. 5.
In the streaming mode, packets always pass

through both the coprocessor and the NP com-

plex. In the look-aside mode, the NP complex gets

all the packets and only uses the coprocessor to

assist with special-function processing. An ad-

vantage of the look-aside mode is that it can hide

some latency, since it allows work on packets to

take place in parallel by both PEs and coproces-
sors, but it makes system design more complex.

2.4. Multithreading

There are two main sources of latency on an

NP: memory access (i.e., reads and writes) and

coprocessor access (i.e., request to response time).

Branch instructions can also introduce latencies
but their latencies are typically shorter than

memory or coprocessor access. Multithreading 4

provides a means for hiding latencies of various

operations of an NP by allowing a PE to proceed

with processing of alternate packets when pro-

cessing of the current packet stalls for some reason

such as a memory access. Multithreading can in-

crease the utilization of PEs and can improve the
overall performance of an NP.

There are different approaches to implementa-

tion of thread switching in PEs. In one approach

the set of registers that are active at a thread switch

point are saved in memory and are later restored

when the execution returns to the thread again.

Due to the save and restore memory operations,

this approach can require many cycles to switch
execution to another thread and in some scenarios

it may even defeat the purpose of multithreading.

In another approach a PE has multiple copies of its

4 Throughout this paper we use the term multithreading to

refer to multithreading for the sake of hiding latency, as

opposed to the more general forms of software-based multi-

threading that are used in multi-tasking environments such as

operating systems and servers.
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local registers (e.g., one set of registers per thread).

In this approach a single-stage PE can switch

threads in one cycle since thread switching only

requires pointing to another set of registers. In a

multi-staged pipelined PE, additional cycles may be
required since the pipeline may need to be cleared

before thread switching can occur. Thread switch-

ing can be triggered by hardware automatically

when execution stalls or by software using thread-

switch instructions that are inserted in the code.

2.4.1. Multithreading analysis

In this section we develop an analytical model

for multithreading analysis. Fig. 6 shows a multi-

threading example to illustrate our analysis model.

We define the following parameters:

MemC The total memory access cost (i.e., read

and write latencies) as represented by the
code�s instructions in terms of the number

of memory cycles, where MemC P 0.

CopC The total coprocessor access cost (i.e., re-

quest to response latencies) as represented

by the code�s instructions in terms of

the number of memory cycles, where

CopC P 0.

L The total number of latency sources (i.e.,

memory accesses and coprocessor acces-
ses) as represented by the code�s instruc-
tions, where LP 0.

T The total packet forwarding path length,

including execution of instructions, co-

processor operations, and memory acces-

ses, in terms of the number of processor

cycles, where T P 1.

n The number of threads that the processor
supports, where nP 1.

C The cost of thread switching in terms of

the number of processor cycles, where

ðL� CÞP 0. For example, in one im-

plementation the processor may need to

save and restore some registers or a

multi-staged pipelined processor may re-

quire some extra cycles to clear its pipe-
line before it can switch to another

thread.

Cop-Y 

Network Processor Complex Cop-X Cop-Z 

Streaming 

Look-Aside 

Streaming 

Packet Flow

Fig. 5. Streaming and look-aside models.
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R The clock ratio between the processor

clock frequency and the memory clock

frequency.

Given the above values, we calculate the prob-
ability, p, that the code is in ‘‘wait state’’ due to

memory access or coprocessor access. 5 The total

latency cost, K, in terms of the number of PE cy-

cles is

K ¼ R� ðMemC þ CopCÞ:
Thus, the wait-state probability is p ¼ K=T .
The probability that every thread is in the wait

state due to memory access or coprocessor access

is then pn. Note that in our calculation we assume

threads are independent since packets arrive

independently in time and as a result threads are

being triggered independently. The probability

that at least one thread is not in the wait state due

to memory access or coprocessor access (i.e., it can
be executed by the PE) is then 1� pn.

From the above results, the probability that a

given thread is switched can be represented by

p � ð1� pn�1Þ. This is basically the probability

that the thread is in the wait state times the

probability that there is at least one other thread

not in the wait state which can be executed by the

PE. Using this, we can then derive the probability,
q, that the PE is in the ‘‘thread-switch state’’ as

q ¼ L� C
K

� �
� p � ð1� pn�1Þ

¼ L� C
T

� �
� ð1� pn�1Þ:

Now we can calculate the PE utilization, U ,

which represents the percentage of the time that

the PE is doing useful work (i.e., executing the

code and it is not in thread-switch or wait states).

The PE utilization can be shown as

U ¼ ð1� pnÞ � L� C
T

� �
� ð1� pn�1Þ;

where 0 < U 6 1 and the valid range for the middle

term is

06
L� C
T

<
1� pn

1� pn�1
:

Fig. 7 shows the processing element utilization

versus the number of threads supported for an

example code path. From the figure and the utili-

zation formula we can make the following obser-

vations:

• As the cost of thread switching, L� C, ap-
proaches the total latency cost, K, the benefit

of multithreading becomes less significant and

in the limit case (i.e., L� C ¼ K) there is no

benefit to multithreading, independent of the

number of threads supported, since utilization

is the same as a single-thread PE (i.e., U ¼
1� p). This corresponds to the ðL� CÞ=T ¼
0:7 line in Fig. 7. Moreover, as the cost of
thread switching, L� C, exceeds the total

latency cost, K, the utilization is negatively im-

pacted by multithreading. That is, a single-

thread PE performs better in this scenario.

• As the cost of thread switching, L� C, compared
to the code path length, T , decreases (i.e., as the
code�s path length increases) the benefit of low-

cycle thread switching versus high-cycle thread
switching becomes less significant and in the lim-

iting case, that is ½ðL� CÞ=T 	 ! 0, there is no

benefit since utilization becomes the same as

the ideal case (i.e., U ¼ 1� pn).
• Independent of how many threads are sup-

ported, the utilization is limited by the cost
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Fig. 7. Processing element utilization versus number of threads.

5 Other sources of latency, such as branch instructions, can

be easily included in the analysis but for simplicity of

presentation they are not shown here.
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of thread switching. In the limit case, that is

as n ! 1, the utilization becomes U ¼ 1�
½ðL� CÞ=T 	.

It should be noted that multithreading increases
PE utilization but at the cost of introducing jitter,

also known as delay variation, and longer delay in

the packet stream. In a single-threaded PE, the PE

is dedicated to processing a single packet at a time.

So, it takes the same amount of time to process

packets of the same type, however this is not the

case with multithreading due to thread switching.

In addition with multithreading, the packet stays
in the system longer and as the result more system

buffer space is required. These negative attributes

of multithreading are not important for non-real-

time data traffic but for realtime traffic (such as

voice or video), which is sensitive to delay and jit-

ter, these adverse effects are important. From this

perspective, multithreading might be a selectable

option that can be enabled or disabled depending
upon the application via some instructions inserted

in the code.

2.5. Support for traffic management

An NP may have specialized-hardware to assist

software with traffic management functions or it

may rely completely on software or an external
device for traffic management. QoS guarantees for

diversified user traffic, one of the most important

issues for networking applications, can be enabled

via traffic management [3]. QoS has four basic

attributes that impact the user application: avail-

ability, throughput, delay (i.e., latency), and jitter

(i.e., delay variation).

The percentage of time that the network is
functional when the user application needs it

is known as availability. High availability is

achieved through a combination of reliable hard-

ware and software components and redundancy.

The average amount of user traffic delivered over a

period of time is known as throughput. Through-

put is typically measured in kilobits per second,

megabits per second or gigabits per second. In-
tentional packet drops by the network or packet

loss due to errors impacts the user-traffic

throughput.

The average time that it takes for a user packet

to travel from the ingress to the egress point of the

network is known as delay. Realtime interactive

applications such as voice and video are highly

intolerant of delay. For more than 6 ms round-trip

delay, echo cancellers for voice becomes necessary
and when delay exceeds 200 ms, interactive voice

becomes very cumbersome. Delay variation, the

difference in delay experienced by packets be-

longing to the same traffic flow, causes choppiness

in voice or video. Buffering can be used to over-

come delay variation, but it introduces additional

delay.

QoS guarantees for diversified user traffic can
be achieved in two ways: (1) using overlay net-

works with bandwidth over-provisioning, or (2)

using intelligent traffic management functions.

Most service providers build their networks today

using the first approach, in which they assign dif-

ferent types of traffic to different networks (e.g.,

voice and data) and provide sufficient additional

bandwidth in the network to avoid the need for
QoS mechanisms. This is, however, an expensive

solution. The second approach involves using in-

telligent traffic management functions such as

classification, metering, marking, policing, schedul-

ing, and shaping [11,12,14]. For the latter ap-

proach, an NP may include specialized-units to

support some of these functions in hardware

(Fig. 8).
A packet classifier classifies packets based on

the content of some portion of the packet header

according to some specified rules and identifies

packets that belong to the same traffic flow. A

predefined traffic profile then specifies the proper-

ties (such as rate and burst size) of the selected

traffic flow by the classifier. The traffic profile has

preconfigured rules for determining whether a
packet conforms to the profile. A traffic meter

measures the rate of traffic flow, selected by the

classifier, against the traffic profile to determine

whether a particular packet is conforming to the

profile. For example, a traffic profile based on

a ‘‘token–bucket’’ scheme may define a token–

bucket meter with token generation rate r and

burst size b. In this example, a packet does not
conforming to the profile if there are insufficient

tokens available in the bucket when it arrives.
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A marker marks a packet based on the metering

result. The marker has rules for marking packets

based on whether they exceed the contracted traffic

profile. There are several standards and propri-

etary schemes for packet marking. For example,
Diffserv defines a single rate three color marker

(srTCM) which marks IP packets either green,

yellow or red according to three traffic parameters:

committed information rate (CIR), committed

burst size (CBS), and excess burst size (EBS). The

srTCM-marking scheme marks an IP packet green

if it does not exceed CBS, yellow if it exceeds CBS

but not EBS, and red otherwise. These markings
are then used to implement congestion control and

queuing policies as established by the network

administrator.

During periods of congestion, the policer dis-

cards packets entering the NP input queues.

Packets are discarded in a fair fashion based on

their marking (e.g., red packets first, yellow

packets next and green packets last) when the in-
put queues exceed some threshold values. As a

result, fairness of resource usage is achieved since

conforming-traffic is forwarded and non-con-

forming traffic is discarded. A congestion avoid-

ance algorithm such as the random early detection

(RED) or weighted random early detection

(WRED) can be used for IP flows to control the

average size of input queues. Such schemes start
discarding packets from selected traffic flows when

the input queues begin to exceed some threshold

values.

Packet scheduling schemes are used to intelli-

gently control how packets get serviced once they

arrive at the NP output ports. To meet the various

QoS requirements of a multi-service platform, a

scheduler may support a mix of flexible queuing

disciplines such as

• Priority queuing (PQ): Packets are assigned to
different queues according to some priority

scheme and the scheduler services the highest-

priority queue first, the second highest-priority

queue next and so forth. Empty queues are

skipped.

• Round robin queuing (RRQ): Packets are as-

signed to various queues depending upon their

types. Queues are then serviced by the scheduler
one packet at a time in round-robin order,

thereby providing a fair share of the output port

to each queue.

• Weighted fair queuing (WFQ): This scheme is

also known as class-based queuing (CBQ) and

custom queuing (CQ). Packets are assigned into

various queue classes and each queue is assigned

a relative weight (e.g., 20% realtime, 30% in-
teractive, and 50% file transfer). The scheduler

services queues in a round-robin fashion in pro-

portion to the weights assigned to queues.

Per-flow queuing with hierarchical scheduling is

needed to provide proper QoS to each flow rather

than a flow-class in an aggregated way. This is also

known as hierarchical resource- or link-sharing
scheduling [13]. Per-flow queuing with hierarchical

scheduling enables traffic tracking and scheduling

based on individual flows. This allows scheduling

decisions to be based on, for example, application

types and the associated subscribers and service

providers, as shown in Fig. 9.
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Packet Flow Classifier Marker Policer 
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Protocol 
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Fig. 8. Network processor support for traffic management.
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The shaper smoothes the traffic flow exiting the

system in order to bring the traffic flow into

compliance with the contracted traffic profile. This

also allows the network administrator to control

the traffic rate of an outbound interface. Shapers
are typically implemented using a token–bucket

scheme with a queue in which a packet is for-

warded when there are sufficient tokens available

in the bucket. When there are insufficient tokens

available in the bucket, the packet is put on the

queue and delayed until enough tokens are gen-

erated to service the queue.

2.6. External interfaces

An NP is typically a portion of a larger system

and as the result its interfaces dictate how well it

can be integrated with the other components of the

system. The NP connectivity along with the overall

flow of data throughout the system becomes a key

factor in how data should flow through each
subsystem component. Fig. 10 shows the basic

external interfaces for an NP. Depending upon the

targeted applications and environment, an NP

may provide some or all of the interfaces shown in

the figure.

The line interface is for attaching an NP to
network ports through external framers and

physical layer devices. An NP may include on-chip

MACs to allow it to connect directly to external

PHY devices. Typical line interfaces for NPs in-

clude: SMII for Fast Ethernet, GMII and/or TBI

for Gigabit Ethernet, UTOPIA, POS, or the

NPF 6-adopted SPI-4.2. The line interface band-

width determines how much network traffic can
flow into or out of the NP.

The switch interface enables an NP to be at-

tached to an external switch fabric. The switch

interface must provide sufficient bandwidth to

Per-Flow 

Queues 

Output Port 

Application 

Level 

Scheduler 

Subscriber 

Level 

Scheduler 

Service 

Provider 

Level 

Scheduler 

Fig. 9. Per-flow queuing with 3-level hierarchical scheduling.

6 The Network Processing Forum (NPF) is an industry

consortium which develops standards for NP hardware and

software interfaces.
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allow all the line interface traffic to move across

the switch interface. Overheads including switch

fabric headers, NP headers, and in-band commu-
nication, needs to be accounted for in determining

the over-speed required at the switch interface.

Typically, 30–40% excess bandwidth on top of the

line interface bandwidth is required. CSIX-L1 is

the NPF standard for the switch fabric interface.

Additionally, most switch fabric vendors have

their own proprietary switch interfaces.

The memory interfaces are used for attachment
to external packet, control and instruction mem-

ories, as discussed earlier. The multiplicity of

memories along with their types and the band-

width of these interfaces have major implications

on the overall performance of an NP.

There are a wide variety of coprocessors that

may be attached externally to an NP such as

CAMs, lookup coprocessors and security copro-
cessors. Like the other interfaces, there is no single

standard for the coprocessor interface. The NPF

LookAside Phase 1 interface, which is based on

QDR, may be used for CAM attachment. Rap-

idIO or HyperTransport (also known as LDT) are

more suitable for generic coprocessors (such as

security coprocessors), since they provide support

for memory coherency.
The control processor interface provides a

means for the NP to communicate with an external

control plane processor (i.e., host processor).

Typical control plane interfaces include PCI,

RapidIO and HyperTransport. PCI is a good

choice, if the control plane traffic is expected to be

low, since many GPPs support PCI. RapidIO or

HyperTransport are more suitable for applications

that require high data rates between the control

processor and NP.

3. Network processor programming

The parallel architecture can provide a Run-to-

Completion (RTC) programming model which of-

fers the appearance of writing software for only

one thread but results in the spreading of packets
over many threads. This model allows the pro-

grammer to see a single thread which can access

the entire instruction memory space and all the

shared resources such as control memory, tables,

counters, etc. The RTC model is based on the

symmetric multiprocessor (SMP) architecture in

which multiple PEs share the same memory. The

PEs are used as a pool of processing resources, all
executing simultaneously, either processing data

or in idle mode waiting for work. The IBM�s
PowerNP network processor is an example of the

RTC model.

In the pipelined architecture, which is based on

some form of a distributed programming model,

each pipeline PE is optimized to handle a certain

category of tasks and instructions. In this model,
the application program is partitioned among

pipeline stages. A weakness in the pipeline model is

the necessity of evenly distributing the work at

each segment of the pipeline. When the work is not

properly distributed, the flow of work through the

pipeline is disrupted. For example, if one segment

is over-allocated, then that segment of the pipeline
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Fig. 10. Network processor main external interfaces.
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will stall out preceding segments, and will starve

out successive segments. The Intel�s IXP1200 NP is

an example of the pipelined model.

3.1. Programming challenges

With the high degree of performance expected

of NPs, the trend is to provide operating system

(OS) functionality in hardware and expose an in-

terface to the application. Thus, there might be

only a small software component to the OS or the

OS might even be non-existent. For example, a

hardware task scheduler can perform packet as-

signment to PEs, special hardware can handle the
common I/O paths for packets, memory can be

represented as free lists and so forth. These would

avoid the need for separate OS service routines.

However, the lack of a standard programming

interface and an OS-level service make NP pro-

gramming more complex than GPP [5].

To achieve good performance on NPs, applica-

tion programs often need to be written in assembly
or a combination of assembly and a high-level

language (such as ‘‘C’’). High-level language

compilers for NPs are useful for initial software

development but hand-optimization is often nec-

essary for efficient final code [1]. This deficiency is

mainly due to NP compliers� immaturity which

should resolve over time as NP-specific code op-

timization techniques are developed for compilers.
The application software breakdown into con-

trol plane and data plane with one piece executing

on a control-plane processor and the other on an

NP requires a communication interface between

the two. The application software needs to be

‘‘adapted’’ for each NP, since there is no standard

for this interface today. The IETF�s ForCES

Working Group and NPF are in the process of
developing standards for this interface.

4. Conclusion

NPs are becoming critical components of net-

working equipments to support evolving sophisti-

cated applications at extraordinary performance
levels. In this paper, we presented various NP ar-

chitectures and analyzed their implications on the

programming models. We examined the internal

organizational structure and functions of the NP

building blocks including processing engine, task

scheduler, memory, coprocessor and traffic man-

ager. We addressed the overall NP connectivity

and the role of its external interfaces which dictate
how well it can be integrated with the other system

components. We discussed the NP programming

models and the software development challenges

presented by NPs.

The number of NPs with widely varied re-

quirements and heterogeneous micro-architectures

has grown at an astonishing rate. At the same,

networking applications are constantly evolving
and new application domains for NPs are still

emerging. These factors make evaluation and

comparison of NPs an increasingly challenging

task. A systematic benchmarking methodology

and evaluation scheme in terms of functionality

and architectural aspects for the maturing NP field

is needed to complement the approaches proposed

in [2,7,9].
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