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Abstract
IP address lookup is challenging for high performance routers because it requires a longest matching prefix at

speeds of up to 10 Gbps (OC-192). Existing solutions have poor update times or require large amounts of expensive

high speed memory, and do not take into account the flexibility of ASICs or the structure of modern high speed mem-

ory technologies such as SDRAM and RAMBUS. In this paper, we present a family of IP lookup schemes using a data

structure that compactly encodes large prefix tables. For example, one of our reference implementations requires only

110 Kbytes of memory for the 41,000 entry Mae East database). The schemes can be instantiated to require a maxi-

mum of 4-7 memory references which, together with a small amount of pipelining, allows wire speed forwarding at

OC-192 (10 Gbps) rates. We also present a series of optimizations to the core algorithm that allows the memory

access width of the algorithm to reduced at the cost of memory references or allocated memory.

1 Introduction
Recently IP destination address lookups have received a great deal of attention

[3][4][12][18][20][21][22]. Because of increased traffic in the Internet, faster links are being deployed;
2.48 Gbit/sec backbone links are being deployed, and the time is not far off when 10 Gigabit/sec (OC-192c)
links will be deployed. Faster links in turn require faster forwarding by routers. Since a large number of
Internet packets are minimum sized packets (e.g., TCP acks), a number of vendors advertise wire speed for-
warding, which is the ability to forward minimum size TCP/IP packets at line rates. Wire speed forwarding
for say OC-192c rates requires 24 million forwarding decisions (and hence IP lookups) per second.

While there are other forwarding tasks, the basic tasks such as TTL updates and checksums can eas-
ily be done in hardware; scheduling can be handled efficiently using either FIFO, RED, or weighted round
robin schemes; finally, filter processing for up to 1000 filters can be handled by a ternary CAM. Unfortu-
nately, backbone routers today can easily have 50,000 prefixes (taking growth into account, it is reasonable
for a backbone router today to aim for several hundred thousand prefixes) for which brute force solutions
like CAMs are too expensive. For these reasons, fast, cheap algorithmic solutions to the IP lookup problem
with deterministic performance guarantees are of great interest to router vendors. 

IP lookups require a longest matching prefix computation at wire speeds. The current version (IPv4)
uses 32 bit destination addresses; each Internet router can have say 50,000 prefixes, each of which we will
denote by a bit string (e.g., 01*) of up to 32 bits followed by a ‘‘*’’.  Each prefix entry consists of a prefix
and a next hop value.  For example, suppose the database consists of only two prefix entries (01* --> L1;
0100* --> L2) If the router receives a packet with destination address that starts with 01000, the address
matches both the first prefix (01*) and the second prefix (0100*). Since the second prefix is the longest
match, the packet should be sent to next hop L2. On the other hand, a packet with destination address that
starts with 01010 should be sent to next hop L1. The next hop information will typically specify an output
port on the router and possibly a Data Link address.

What are the requirements of an ideal IP lookup scheme? First, it should require only a few memory
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accesses in the worst case to allow wire speed forwarding. Second, it should require as small an amount of
expensive high speed memory as possible. In particular, if the IP lookup algorithm is implemented as a sin-
gle chip solution, the entire data structure (including overhead) must fit into the maximum amount of on-
chip memory.

Besides determinism in terms of lookup speed and storage, many vendors would also like determin-
ism in terms of update times. Many existing IP lookup schemes (e.g., [3],[4],[12], [18],[22]) are tailored
towards fast lookup speeds but have poor worst case update performance. The first reason for fast update
times is the presence of routing instabilities [11], which can result in updates every millisecond. Slow
update performance can result in dropped updates and further instability. For single chip solutions, a better
reason is simplicity. If the update process is simple and takes a bounded amount of time, the chip (as
opposed to the software) can do the updates in hardware. This makes the software much simpler and makes
the chip more attractive to customers.

Although the preceding discussion was slanted towards hardware, we would also like a core lookup
algorithm that can be tuned to work in differing environments including software, single chip implementa-
tions, and single chip with supporting memory. Even when using off-chip memory, there are several inter-
esting memory technologies. Thus a last important goal of a useful IP lookup scheme is tunability across a
wide range of architectures and memories. In Section 2, we present a new model for memory architectures
that abstracts the essential features of many current memory configurations. This model can be used to tune
any IP lookup algorithm by suggesting optimum access sizes, which in turn affects the way data structures
are laid out.

In this paper we provide a systems viewpoint of IP lookups, with heavy emphasis on updates. We
provide an analysis of current and future memory technologies for IP lookups in hardware. We present a
new algorithm, named Tree Bitmap, that we show has good update qualities, fast lookup times, low storage
needs, and is amenable to both software and hardware implementations. We present a family of optimiza-
tions to Tree Bitmap that combined with our analysis of current and future memory technologies can be
used in cookbook fashion to design lookup engines for IPv4 unicast or IPv6 unicast at rates up to OC-192.
Coupled with a hardware reference design we present a novel memory management scheme that can be tied
with tree bitmap incremental updates to yield a deterministic time, and low memory overhead approach.

We note that our algorithm differs from the Lulea algorithm (which is the only existing algorithm to
encode prefix tables as compactly as we do) in several key ways. First, we use a different encoding scheme
that relies on two bit maps per node. Second, we use only one memory reference per trie node as opposed
to two per trie node in Lulea. Third, we have guaranteed fast update times; in the Lulea scheme, a single
update can cause almost the entire table to be rewritten. Fourthly, unlike Lulea, our core algorithm can be
tuned to leverage off the structure of modern memories.

The outline of the rest of the paper is as follows. In Section 2, we describe memory models; the
memory model is perhaps a research contribution in its own right, and may be useful to other designers. In
Section 3, we briefly review previous work, especially Lulea tries [3] and expanded tries [20]. In Section 4,
we present the core lookup scheme called Tree Bitmap and contrast it carefully with Lulea and expanded
tries. In Section 5, we describe optimizations to the core algorithm that reduce the access size required for
a given stride size, and provide deterministic size requirements. In Section 6, we describe reference soft-
ware implementations. In Section 7, we describe a reference hardware implementation. Sections 6 and 7 are
based on the memory model in Section 2 and the core ideas and optimizations of Sections 4 and 5. We con-
clude in Section 8.

2 Models
2.1  Memory Models

We will consider a series of choices for implementation ranging from pure software to pure hard-
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ware.   We describe memory models for such choices.

2.1.1 Software

We will consider software platforms using modern processors such as the Pentium and the Alpha.
These CPUs execute simple instructions very fast (few clock cycles) but take much longer to make a ran-
dom access to main memory. The only exception is if the data is in either the Primary (L1) or Secondary
Cache (L2) which allow access times of a few clock cycles. The distinction arises because main memory
uses DRAM (60 nsec per random access), while cache memory is expensive but fast SRAM (10-20 nsec).
When a READ is done to memory of a single word, an entire cache line is fetched into the cache. This is
important because the remaining words in the cache line can be accessed cheaply for the price of a single
memory READ. 

The filling of cache lines exploits a simple fact about Dynamic RAMS that is crucial to an under-
standing of modern memory systems. While random access to an arbitrary word (say 32 bits) W in a
DRAM may take a long time (say 60 nsec), once W is accessed, access to locations that are contiguous to
W (burst mode) can take place at much faster speeds comparable to SRAM speeds. This is because
DRAMs are often internally structured as a two dimensional memory consisting of rows (often called
pages) of several kilobits: to access a word W the entire page containing W must first be retrieved. 

2.1.2 On-Chip ASIC Memory

Recall that an ASIC is a special IC for (say) IP lookups.   Since much of the memory latency is
caused by going off-chip to a separate memory chip and because chip densities have been going up, it
makes sense to put as much memory on-chip as possible. Artisian Components [1]advertises memory gen-
erators for several ASIC foundries, and can therefore provide a rough picture of the current state of on-chip
SRAM technology. At.25 micron they say that a 64kbit block of memory can run at 200 Mhz worst case for
large configurations. Devoting half of the die of a large.25 micron die should in our estimation yield at least
4 Mbits of SRAM. On-chip DRAM is becoming a standard option from several ASIC foundries. But it is
unclear at this time what will be the real limitations of embedded DRAM, so we will not consider it any
more in this paper.

2.1.3 Discrete Memory Technologies

Besides the use of standard SRAM and DRAM, the major off-chip RAM technologies today and in
the future are PC-100 SDRAM [7], DDR-SDRAM[6], Direct Rambus[5], and Synchronous SRAM[16].
Efficient use of most of these technologies are based on the idea of memory interleaving to hide memory
latency. Consider for example Figure 1 which shows an IP Lookup ASIC that interfaces to a PC-100
SDRAM. The figure shows that the SDRAM internally has two DRAM banks, and the interface between
the ASIC and the SDRAM is 80 pins (6 bits for Control, 12 for Address, and 64 bits for data). The basic
picture for other technologies is similar except that we could use more than two banks (e.g., 16 banks in
RAMBUS).

Notice also that in the figure we show that the IP lookup ASIC has a FIFO buffer of destination
addresses.   This is so that we can allow some limited pipelining of destination address lookups to fully uti-
lize the memory bandwidth. For example, assume that lookups require 4 accesses to a data structure, start-
ing with a root node that points to a second level node, to a third level node, to a fourth level node.   If we
have two banks of memories, we can place the first two levels of data structure in the first memory bank
and the third and fourth in the second memory bank.   If we can simultaneously work on the lookup for two
IP addresses (say D1 followed by D2), while we are looking up the third and fourth level for D1 in Bank 2,
we can lookup the first and second levels for D2 in Bank 1.   If it takes 40 nsec per memory access, it still
takes 4 * 40 = 160 nsec to lookup D1. However, we have a higher throughput of two IP lookups every 160
nsec.
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Pipelining may appear complex but it is not because the control of the multiple memory banks is
done across the ASIC interface pins (as opposed to dealing with the memory through an intermediate mem-
ory controller). The user of the lookup algorithm (e.g., the forwarding code) also has a simple interface: an
IP lookup answer can be read in a fixed amount of time (160 nsec in the above example) after the request is
made. The results (e.g., next hop info) are posted to a FIFO buffer of next hops (see Figure) which are read
by the forwarding engine at the appropriate time.

For an algorithm designer, we wish to abstract the messy details of these various technologies into a
clean model that can quickly allow us to choose between algorithms.   The most important information
required is as follows. First, if we wish to have further interleaving for more performance we need more
memory interfaces and so more interface pins. Because interface pins for an ASIC are a precious resource,
it is important to quantify the number of memory interfaces (or pins) required for a required number of ran-
dom memory accesses. Other important design criteria are the relative costs of memory per bit, the amount
of memory segmentation, and the optimal burst size for a given bus width and random access rate that fully
utilizes the memory.

Table 1 shows a table comparing the more quantifiable differences between the discrete memory
technology choices. To understand a sample row of this Table, let us go back to the earlier Figure 1 for
SDRAMs and use it to obtain the numbers in the first row of the Table. We see from the figure that the
ASIC has an 80 pin interface, which is what we put in the first column.   The data rate per pin is given by
the manufacturer to be 100 Mbps (10 nsec per bit). We see from the figure that the logical number of banks
is two. Finally, the manufacturer specs can be used to tell us that a random access to 8 bytes (notice that the
data interface has 64 data pins = 8 bytes) takes 40 nsec. Thus we can compute that the number of random
memory accesses in 160 nsec is exactly 4 (160/40).   Notice that the first five columns have been filled in
essentially from manufacturer specs. One cost measure of these random accesses is given in the 6th column
by showing the ratio of ASIC pins to random memory accesses. The final column shows the optimal burst
sizes when accessing the memory at the highest random rate possible. For the first row, this arises because
we can transfer 64-bits of data in 10 ns (data rate is 100 Mbps). Since a random access takes 40 ns (4
accesses in 160 ns), we need to have a burst of four 64-bit words (32-bytes total) to avoid idling memory 

Figure 1:  Block Diagram of Lookup Reference Design
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Why should an IP lookup ASIC designer care about this table?   First, the designer can use this table
to choose between technologies based on dollar cost and pins/random accesses.   Having chosen a technol-
ogy, the designer can then use the table to determine the optimal burst size. The data structure can then be
designed to have every access to the data structure access the optimal burst size. Using bigger burst sizes
will be suboptimal (would require more banks or more accesses) and not utilizing the full burst size would
use the memory system inefficiently. For example, we observe from the table that the optimal block size for
SDRAM based memories (e.g., 32 bytes for PC-100 SDRAM) is much larger than for SRAM based tech-
nologies (4 for SRAM).   For example, this indicates that we could use larger stride trie algorithms (see
later) for DRAM based memories.

2.2 Wire Speed Forwarding

Wire speed IP forwarding has become an industry buzzword that needs to be carefully interpreted as
different interpretations differ by as much as a factor of two. The desire for wire speed performance arises
because studies show that 50% of all traffic is TCP/IP ack packets [11]. If a router is unable to process min-
imum length packets, then when a burst of packets arrive, they must be queued for processing at the for-
warding engine. Since no information is known about the packets as they await processing, all packets must
be treated as equal and best effort and FIFO queueing must be used. This could result in high priority traffic
being lost or delayed by a burst of low priority traffic. 

Wire speed performance is also desirable since it simplifies system design. To make this precise, we
have to examine popular high capacity data link level technologies. For backbone links, the worst case
seems to arise with TCP acks running over IP. The link layer technology can be either Gigabit Ethernet[8],
IP over PPP over SONET[2], Packet over SONET [13] or IP over ATM over SONET. Simple calculations
show that for OC-48 links the worst case forwarding rate requires a lookup every 160 nsec (roughly 6 mil-
lion packets per second) and climbs up to a forwarding rate of 24 million packets per second for OC-192.

3 Related Work
With new CAM technologies, CAMs in the future may be a fine solution for enterprise and access

routers that have less than 32000 prefixes[17].   Thus algorithmic solutions like ours can support much
larger prefixes for backbone routers; the flip side is that they need to exhibit some of the determinism in
update and lookup times that CAMs provide.

The multi-column lookup scheme [12] uses a B-tree like approach which has reasonably fast lookup
times and reasonable storage but poor update times. The binary search on hash tables approach [22] scales
very well to IPv6 128 bit addresses but has poor update times and possible non-determinism because of
hashed lookups.   The Stanford scheme uses a multibit trie with an initial stride of 24 bits, and then two lev-
els of 8 bit tries. Once again updates can be slow in the worst case, despite a set of clever optimizations.

Both the LC-Trie[18] and Expanded Trie schemes [20] allow multibit tries that can have variable
strides. In other words, the pointer to a trie code can encode the number of bits sampled at the trie node. The

Direct Rambus(16-bit) 76 800 8a 16 4.75 16

Synchronous SRAM(32-bit) 52 100 1 16 3.25 4

a. Direct Rambus actually has 16 banks, but due to the fixed burst size of 8 data ticks, we only need to logi-
cally segment the Rambus memory into 8 banks
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Table 1:  Memory Technology For Hardware IP Lookups
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Expanded trie [20] allows memory to be traded off for lookup speed but requires a fairly high amount of
memory (factor of two worse than those of our scheme and the Lulea scheme) despite the use of dynamic
programming optimizations. The optimizations can also slow down worst case update times; without con-
sidering the time for the optimization program to run, the update times are around 5 msec. The LC-trie fun-
damentally appears to have slow update times though none are reported.

The Lulea scheme is closest in spirit to ours in that both use multibit tries and bit maps to compress
wasted storage in trie nodes. There are fundamental differences, however, which allow our scheme more
tunability and faster update times. To show these differences in detail we spend the rest of the section
describing three detailed examples of the unibit trie algorithm, the expanded trie algorithm, and the Lulea
scheme on a sample prefix database. Since we will use the same sample database to describe our scheme,
this should help make the differences clearer.

3.1  Unibit Tries

For updates the one bit at a time trie (unibit trie) is an excellent data structure. The unibit trie for the
sample database is shown in Figure 2.   With the use of a technique to compress out all one way branches,
both the update times and storage needs can be excellent. Its only disadvantage is its speed because it needs
32 random reads in the worst case.   The resulting structure is somewhat different from Patricia tries which
uses a skip count compression method that requires backtracking.

3.2 Expanded Tries

In Expanded tries [20], the main idea is to use tries that go several bits at a time (for speed) rather
than just 1 bit at a time as in the unibit trie. Suppose we want to do the database in Figure 2 three bits at a
time. We will call the number of bits we traverse at each level of the search the “stride length”. 

A problem arises with prefixes like P2 = 1* that do fit evenly in multiples of 3 bits. The main trick is
to expand a prefix like 1* into all possible 3 bit extensions (100, 101, 110, and 111) and represent P1 by
four prefixes. However, since there are already prefixes like P4 = 101 and P5 = 111, clearly the expansions
of P1 should get lower preference than P4 and P5 because P4 and P5 are longer length matches. Thus the
main idea is to expand each prefix of length that is does fit into a stride length into a number of prefixes that
fit into a stride length. Expansion prefixes that collide with an existing longer length prefix are discarded.

Part A of Figure 3 shows the expanded trie for the same database as Figure 2 but using expanded
tries with a fixed stride length of 3 (i.e., each trie node uses 3 bits). Notice that each trie node element is a
record has two entries: one for the next hop of a prefix and one for a pointer. (Instead of showing the next
hops, we have labelled the next hop field with the actual prefix value.) We need to have both pointers and
next hop information is for example in entry 100 in the root node. This contains a prefix (P1 = 100) and
must also contain a pointer to the trie node containing P6 and pointing to P9. 

Notice also the down side of expansion. Every entry in each trie node contains information. For

Figure 2:  Sample Database with Unibit Trie Representation

Prefix Node
Place Holder Node

next bit=1next bit=0

Legend
P1

P2
P3

P4
P6

P5

P7

P8
P9

Prefix Database
P1  *
P2  1*
P3  00*
P4  101*
P5  111*
P6  1000*
P7  11101*
P8  111001*
P9  1000011* 

Unibit Trie



Tree Bitmap : Hardware/Software IP Lookups with Incremental Updates Page 6

example, the root trie node has its first two elements filled with expansions of P3 and the next two with
expansions of P1. In general, using larger strides requires the use of larger trie nodes with more wasted
space. Reference [20] does show how to use variable stride tries (where the strides are picked to reduce
memory) while keeping good search times. However, the best case storage requirements for the Mae East
database (after the most sophisticated optimizations) are around 500 Kbytes.

3.3  Lulea

The Lulea scheme [3] does much better in terms of worst case storage, using only 200 Kbytes of
memory to store the current Mae East database. One way to describe the scheme is to first subject the
expanded trie scheme to the following optimization that we call “leaf pushing”. The idea behind leaf push-
ing is to cut in half the memory requirements of expanded tries by making each trie node entry contain
either a pointer or next hop information but not both.   Thus we have to deal with entries like 100 in the root
node of Part A of Figure 3 that have both a pointer and a next hop. The trick is to push down the next hop
information to the leaves of the trie. Since the leaves do not have a pointer, we only have next hop informa-
tion at leaves [20].   This is shown in Part B of Figure 3. Notice that the prefix P2 associated with the 100
root entry in Part A has been pushed down to several leaves in the node containing P6.

The Lulea scheme starts with a conceptual leaf pushed expanded trie and (in essence) replaces all
consecutive elements in a trie node that have the same value with a single value. This can greatly reduce the
number of elements in a trie node. To allow trie indexing to take place even with the compressed nodes, a

Figure 3:  Related Work
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bit map with 0’s corresponding to the removed positions is associated with each compressed node.

For example consider the root node in Figure 3. After leaf pushing the root node has the sequence of
values P3, P3, P1, P1, ptr1, P4, P2, ptr2 (where ptr1 is a pointer to the trie node containing P6 and ptr2 is a
pointer to the trie node containing P7).   After we replace each string of consecutive values by the first
value in the sequence we get P3, -, P1, -, ptr1, P4, P2, ptr2. Notice we have removed 2 redundant values.
We can now get rid of the original trie node and replace it with a bit map indicating the removed positions
(10101111) and a compressed list (P3, P1, ptr1, P4,P2, ptr2). The result of doing this for all three trie nodes
is shown in Part C of the figure. 

The search of a trie node now consists of using a number bits specified by the stride (e.g., 3 in this
case) to index into each trie node starting with the root, and continuing until a null pointer is encountered.
On a failure at a leaf, we need to compute the next hop associated with that leaf. For example, suppose we
have the data structure shown in Part C and have a search for an address that starts with 111111. We use the
first three bits (111) to index into the root node bit map. Since this is the sixth bit set (we need to count the
bits set before a given bit), we index into the sixth element of the compressed node which is a pointer to the
right most trie node.   Here we use the next 3 bits (also 111) to index into the eight bit. Since this bit is a 0,
we know we have terminated the search but we must still retrieve the best matching prefix. This is done by
counting the number of bits set before the eighth position (4 bits) and then indexing into the 4th element of
the compressed trie node which gives the next hop associated with P5.

The Lulea scheme is used in [3] for a trie search that uses strides of 16,8, and 8. Without compres-
sion, the initial 16 bit array would require 64K entries of at least 16 bits each, and the remaining strides
would require the use of large 256 element trie nodes. With compression and a few additional optimiza-
tions, the database fits in the extremely small size of 200 Kbytes.

Fundamentally, the implicit use of leaf pushing (which ensures that only leaves contain next hop
information) makes insertion inherently slow in the Lulea scheme. Consider a prefix P0 added to a root
node entry that points to a sub-trie containing thirty thousand leaf nodes. The next hop information associ-
ated with P0 has to be pushed to thousands of leaf nodes. In general, adding a single prefix can cause almost
the entire structure to be modified making bounded speed updates hard to realize.   

If we abandon leaf pushing and start with the expanded trie of Part A of Figure 3, when we wish to
compress a trie node we immediately realize that we have two types of entries, next hops corresponding to
prefixes stored within the node, and pointers to sub-tries. Intuitively, one might expect to need to use TWO
bit maps, one for internal entries and one for external entries.   This is indeed one of the ideas behind the
tree bit map scheme we now describe.

4 Tree Bitmap Algorithm
In this section, we describe the core idea behind our new algorithm that we call Tree Bitmap. Tree

Bitmap is a multibit trie algorithm that allows fast searches (one memory reference per trie node unlike 3
memory reference per trie node in Lulea) and allows much faster update times than existing schemes
(update times are bounded by the size of a trie node; since we only use trie nodes of stride of no more than
8, this requires only around 256 + C operations in the worst case where C is small). Its also has memory
storage requirements comparable (and sometimes slightly better) when compared to the Lulea scheme.

The Tree Bitmap design and analysis is based on the following observations:

* A multibit node (representing multiple levels of unibit nodes) has two functions: to point at chil-
dren multibit nodes, and to produce the next hop pointer for searches in which the longest matching prefix
exists within the multibit node. It is important to keep these purposes distinct from each other.

* With burst based memory technologies, the size of a given random memory access can very large
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(e.g, 32 bytes for SDRAM, see Section 2.2). This is because while the random access rate for core DRAMs
have improved very slowly, high speed synchronous interfaces have evolved to make the most of each ran-
dom access. (See Section 2.2). Thus the trie node stride sizes can be determined based on the optimal mem-
ory burst sizes.

* Hardware can processes complex bitmap representations of up to 256 bits in a single cycle. Addi-
tionally, the mismatch between processor speeds and memory access speeds have become so high that even
software can do extensive processing on bitmaps in the time required for a memory reference.   

* To keep update times bounded it is best not to use large trie nodes (e.g., 16 bit trie nodes used in
Lulea). Instead, we use smaller trie nodes (at most 8 bits).   Any small speed loss due to the smaller strides
used is offset by the reduced memory access time per node (1 memory access per trie node versus three in
Lulea).

* To insure that a single node is always retrieved a single page access, nodes should always be power
of 2 in size and properly aligned (8 byte nodes on 8-byte boundaries etc.) on page boundaries correspond-
ing to the underlying memory technology.

Based on the these observations, the Tree Bitmap algorithm is based on four key ideas.

The first idea in the Tree Bitmap algorithm is that all child nodes of a given trie node are stored con-
tiguously. This allows us to use just one pointer for all children (the pointer points to the start of the child
node block) because each child node can be calculated as an offset from the single pointer. This can reduce
the number of required pointers by a factor of two compared with standard multibit tries.   More impor-
tantly it cuts down the size of trie nodes, as we see below. The only disadvantage is that the memory allo-
cator must, of course, now deal with larger and variable sized allocation chunks.   Using this idea, the same
3-bit stride trie of Figure 3 is redrawn as Figure 4.

The second idea is that there are two bit maps per trie node, one for all the internally stored prefixes
and one for the external pointers. See Figure 5 for an example of the internal and external bit maps for the
root node. The use of two bit maps allows us to avoid leaf pushing. The internal bit map is very different
from the Lulea encoding, and has a 1 bit set for every prefixes stored within this node. Thus for an r bit trie

node, there are 2{r-1} possible prefixes of lengths < r and thus we use a 2r-1 bit map. 

For the root trie node of Figure 4, we see that we have three internally stored prefixes: P1 = *, P2 =
1*, and P3 = 00 *. Suppose our internal bit map has one bit for prefixes of length 0, two following bits for
prefixes of length 1, 4 following bits for prefixes of length 2 etc. Then for 3 bits the root internal bit map
becomes 1011000. The first 1 corresponds to P1, the second to P2, the third to P3. This is shown in Figure

Figure 4:  Sample Database with Tree Bitmap
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5.

The external bit map contains a bit for all possible 2r child pointers.   Thus in Figure 4, we have 8
possible leaves of the 3 bit subtrie. Only the fifth, sixth, and eight leaves have pointers to children. Thus the
extending paths (or external) bit map shown in Figure 5 is 00011001 As in the case of Lulea, we need to
handle the case where the original pointer position contains a pointer and a stored prefix (e.g., location 111
which corresponds to P5 and also needs a pointer to prefixes like P7 and P8.   The trick we use is to push
all length 3 prefixes to be stored along with the zero length prefixes in the next node down. For example, in
Figure 4, we push P5 to be in the right most trie node in Level 2. In the case of P4 (which was stored in the
root subtrie in the expanded trie of Figure 3a) we actually have to create a trie node just to store this single
zero length prefix.

The third idea is to keep the trie nodes as small as possible to reduce the required memory access size
for a given stride. Thus a a trie node is of fixed size and only contains an external pointer bit map, an inter-
nal next hop info bit map, and a single pointer to the block of child nodes. But what about the next hop
information associated with any stored prefixes?

The trick is to store the next hops associated with the internal prefixes stored within each trie node in
a separate array associated with this trie node. For memory allocation purposes result arrays are normally
an even multiple of the common node size (e.g. with 16-bit next hop pointers, and 8-byte nodes, one result
node is needed for up to 4 next hop pointers, two result nodes are needed for up to 8, etc.) Putting next hop
pointers in a separate result array potentially requires two memory accesses per trie node (one for the trie
node and one to fetch the result node for stored prefixes). However, we use a simple lazy strategy to not
access the result nodes till the search terminates. We then access the result node corresponding to the last
trie node encountered in the path that contained a valid prefix. This adds only a single memory reference at
the end besides the one memory reference required per trie node.

The search algorithm is now quite simple. We start with the root node and use the first bits of the
destination address (corresponding to the stride of the root node, 3 in our example) to index into the exter-
nal bit map at the root node at say position P. If we get a 1 in this position there is a valid child pointer. We
count the number of 1s to the left of this 1 (including this 1) as say I. Since we know the pointer to the start
position of the child block (say C) and the size of each trie node (say S), we can easily compute the pointer
to the child node as C + (I * S). 

Before we move on to the child, we also check the internal bit map to see if there is a stored prefix
corresponding to position P. This requires a completely different calculation from the Lulea style bit calcu-
lation. To do so, we can imagine that we successively remove bits of P starting from the right and index into
the corresponding position of the internal bit map looking for the first 1 encountered. For example, suppose
P is 101 and we are using a 3 bit stride at the root node bit map of Figure 5. We first remove the right most
bit, which results in the prefix 10*. Since 10* corresponds to the sixth bit position in the internal bit map,
we check if there is a 1 in that position (there is not in Figure 5). If not, we need to remove the right most

Figure 5:  Multibit Node Compression with Tree Bitmap

P1

P2
P3

Internal Tree Bitmap =>
1

0     1
 1   0 0  0

=> 1011000

root unibit node

2nd Level
3rd Level

Extending Paths Bitmap => 00001101

Root Multi-Bit Node

P1 P2 P3



Tree Bitmap : Hardware/Software IP Lookups with Incremental Updates Page 10

two bits (resulting in the prefix 1*). Since 1* corresponds to the third position in the internal bit map, we
check for a 1 there. In the example of Figure 5, there is a 1 in this position, so our search ends. (If we did
not find a 1, however, we simply remove the first 3 bits and search for the entry corresponding to * in the
first entry of the internal bit map.). 

This search algorithm appears to require a number of iterations proportional to the logarithm of the
internal bit map length. However, in hardware for bit maps of up to 512 bits or so, this is just a matter of
simple combinational logic (which intuitively does all iterations in parallel and uses a priority encoder to
return the longest matching stored prefix). In software this can be implemented using table lookup.   (A fur-
ther trick using a stored bit in the children further avoids doing this processing more than once for software;
see software reference implementation.) Thus while this processing appears more complex than the Lulea
bit map processing it is actually not an issue in practice.

Once we know we have a matching stored prefix within a trie node, we do not immediately retrieve
the corresponding next hop info from the result node associated with the trie node. We only count the num-
ber of bits before the prefix position (more combinational logic!) to indicate its position in the result array.
Accessing the result array would take an extra memory reference per trie node. Instead, we move to the
child node while remembering the stored prefix position and the corresponding parent trie node. The intent
is to remember the last trie node T in the search path that contained a stored prefix, and the corresponding
prefix position. When the search terminates (because we encounter a trie node with a 0 set in the corre-
sponding position of the external bit map), we have to make one more memory access. We simply access
the result array corresponding to T at the position we have already computed to read off the next hop info.

Figure 6 gives pseuducode for full tree bitmap search. It assumes a function treeFunction that can
find the position of the longest matching prefix, if any, within a given node by consulting the internal bit-
map (see description above).  "LongestMatch" keeps track of a pointer to the longest match seen so far. The
loop terminates when there is no child pointer (i.e., no bit set in External bit map of a node) upon which we
still have to do our lazy access of the result node pointed to by LongestMatch to get the final next hop. We
assume that the address being searched is already broken into strides and stride[i] contains the bits corre-
sponding to the i’th stride. 

So far we have implicitly assumed that processing a trie node takes one memory access. This can be
done if the size of a trie node corresponds to the memory burst size (in hardware) or the cache line size (in
software). That is why we have tried to reduce the trie node sizes as much as possible in order to limit the
number of bits accessed for a given stride length. In what follows, we describe some optimizations that
reduce the trie node size even further.

Figure 6:  Tree Bitmap Search Algorithm for Destination Address whose bits are in an array called stride

1.     node:= root;  (* node is the current trie node being examined; so we start with root as the first trie node *)
1.     i:= 1;   (* i is the index into the stride array; so we start with the first stride *)
1.     do forever
1.        if (treeFunction(node.internalBitmap,stride[i]) is not equal to null) then  
1.                        (* there is a longest matching prefix, update pointer *)
1.           LongestMatch:= node.ResultsPointer + CountOnes(node.internalBitmap, 
1.                     treeFunction(node.internalBitmap, stride[i]));
1.        if (externalBitmap[stride[i]] = 0) then    (* no extending path through this trie node for this search *) 
1.             NextHop:= Result[LongestMatch]; (* lazy access of  longest match pointer to get next hop pointer *)
1.             break; (* terminate search)
1.         else (* there is an extending path, move to child node *)
1.             node:= node.childPointer + CountOnes(node.externalBitmap, stride[i]);
1.             i=i+1; (* move on to next stride *)
1.     end do;
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5 Optimizations
For a stride of 8, the data structure for the core algorithm would require 255 bits for the Internal Bit-

map, 256 bits for the External Bitmap, 20 bits for a pointer to children, 20 bits for a result pointer which is
551. Thus the next larger power of 2 node size is 1024 bits or 128-bytes. From our table in Section 2.1. we
can see that for some technologies this would require several memory interfaces and so drive up the cost
and pin count. Thus we seek optimizations that can reduce the access size.

5.1 Initial Array Optimization

Almost every IP lookup algorithm can be speeded up by using an initial array (e.g., [3],[14],[22]).
Array sizes of 13 bits or higher could, however, have poor update times. A example of initial array usage
would be an implementation that uses a stride of 4, and an initial array of 8-bits. Then the first 8-bits of the
destination IP address would be used to index into a 256 entry array. Each entry is a dedicated node possi-
bly 8-bytes in size which results in a dedicated initial array of 2k bytes. This is a reasonable price in bytes
to pay for the savings in memory accesses. In a hardware implementation, this initial array can be placed in
on chip memory.

5.2 End Node Optimization

We have already seen an irritating feature of the basic algorithm in Figure 4. Prefixes like P4 will
require a separate trie node to be created (with bitmaps that are almost completely unused). Let us call such
nodes as "null nodes".  While this cannot be avoided in general, it can be mitigated by picking strides care-
fully. In a special case, we can also avoid this waste completely. Suppose we have a trie node that only has
external pointers that point to "null nodes".  Consider Figure 7 as an example that has only one child which
is a "null node".    In that case, we can simply make a special type of trie node called an endnode (the type
of node can be encoded with a single extra bit per node) in which the external bit map is eliminated and
substituted with an internal bit map of twice the length. The endnode now has room in its internal bit map
to indicate prefixes that were previously stored in "null nodes".  The "null nodes" can then be eliminated
and we store the prefixes corresponding to the null node in the endnode itself. Thus in Figure 7, P8 is
moved up to be stored in the upper trie node which has been modified to be an endnode with a larger bit
map.

5.3 Split Tree Bitmaps

Keeping the stride constant, one method of reducing the size of each random access is to split the
internal and external bitmaps. This is done by placing only the external bitmap in each "Trie" node.  If there

Figure 7:  End Node Optimization
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is no memory segmentation, the children and the internal nodes from the same parent can be placed contig-
uously in memory. If memory segmentation exists, it is a bad design to have the internal nodes scattered
across multiple memory banks. In the case of segmented memory, one option is to have the trie node point
at the internal node, and the internal node point at the results array. Or the trie node can have three pointers
to the child array, the internal node, and to the results array. Figure 8 shows both options for pointing to the
results array and implementing split tree bitmap. 

To make this optimization work, each child must have a bit indicating if the parent node contains a
prefix that is a longest match so far. If there was a prefix in the path, the lookup engine records the location
of the internal node (calculated from the data structure of the last node) as containing the longest matching
prefix thus far. Then when the search terminates, we first have to access the corresponding internal node
and then the results node corresponding to the internal node. Notice that the core algorithm accesses the
next hop information lazily; the split tree algorithm accesses even the internal bit map lazily.   What makes
this work is that any time a prefix P is stored in a node X, all children of X that match P can store a bit say-
ing that the parent has a stored prefix. The software reference implementation uses this optimization to save
internal bit map processing; the hardware implementations use it only to reduce the access width size
(because bit map processing is not an issue in hardware). 

A nice benefit of split tree bitmaps is that if a node contained only paths and no internal prefixes, a
null internal node pointer can be used and no space will be wasted on the internal bitmap. For the simple
tree bitmap scheme with an initial stride of 8 and a further stride of 4, 50% of the 2971 trie nodes in the
Mae-East database do not have an internally terminating prefixes..

5.4 Segmented Bitmaps

After splitting the internal and external bitmaps into separate nodes, the size of the nodes may still be
too large for the optimal burst size (see 2.1). The next step for reducing the node sizes is to segment the
multi-bit trie represented by a multi-bit node. The goal behind segmented bitmaps is to maintain the desired
stride, keep the storage space per node constant, but reduce the fetch size per node. The simplest case of
segmented bitmaps is shown in Figure 9 with a total initial stride of 3. The subtrie corresponding to the trie
node is split into its 2 child subtries, and the initial root node duplicated in both child subtries. Notice that
the bit maps for each child subtrie is half the length (with one more bit for the duplicated root). Each child
subtrie is also given a separate child pointer as well as a bit map and is stored. as a separate "segment".
Thus each trie node contains two contiguously stored segments.

Because each segment of a trie node has its pointers, the children and result pointers of other seg-
mented nodes are independent. While the segments are stored contiguously, we can use the high order bits
of the bits that would normally have been used to access the trie node to access only the required segment.
Thus we need to roughly access only half the bit map size. For example, using 8 bit strides, this could

Figure 8:  Split Tree Bitmap Optimization 
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reduce the bit map accessed from 256 bits to 128 bits.

When this simple approach is extended to multiple segmentations, the complexity introduced by the
segmented bitmap optimization is that if k is the initial stride, and 2^j is the number of final segmented
nodes, the internal prefixes for the top k-j rows of prefixes are shared across multiple segmented nodes. The
simplest answer is to simply do controlled prefix expansion and push down to each segmented node the
longest matching result from the top k-j rows.

5.5 CAM Nodes

Empirical results show that a significant number of multi-bit nodes have only a few internal prefixes.
In these cases the space normally occupied by internal bitmaps and a pointer to a results arrays can be
replaced by simple CAM type entries that have match bits, match length, and next hop pointers. The gain is
that the next hop pointers are in the CAM nodes and not in a separate results array taking up space. For end
nodes and internal nodes, even single entry CAM nodes was found to typically result in over half of the
next hop pointers moving from results arrays, to inside CAM end nodes. There are quickly diminishing
returns however. 

6 Software Reference Design
Our software reference implementation of the TreeBitmap algorithm, which we present in this sec-

tion, outperforms other state-of-the-art IP address lookup algorithms in some dimension of interest: these
include lookup speed, or insertion/deletion speed, and total size. At the same time the implementation of
the algorithm is very simple. 

For software, we chose a stride of 4; by keeping this small, we are able to fit the entire node into 8
bytes, which is the size of an internal cache line on many processors. Also, with a small stride, the bitmaps
are small: the internal tree bitmap is 15 bits, and the external paths bitmap is 16 bits. With such small bit-
maps, we can use a byte lookup table to efficiently compute the number of set bits in a bitmap.   We also
eliminate the pointer to a results array by allocating children nodes as well as the results in a contiguous
buffer, so that only a single pointer can be used to access both arrays with children to the right and results
to the left,   Thus either array can be accessed directly, without having to know the number of entries in the
other array. We also add a "parent_has_match" bit to each node. This bit allows us to avoid searching for a
matching prefix in all but two of the internal bitmaps of encountered node. During trie traversal we use this
bit to determine the last node that had such a valid prefix and lazily search the prefix bit map of that node
after the search terminates. 

Our reference implementation uses an initial 8K entry lookup table and a 4 bit stride to create a
13,4,4,4,4,3 trie. Since there is a large concentration of prefixes at lengths 16 and 24, we ensure that for the
vast majority of prefixes the end bits line up at the bottom of a trie node, with less wasted space. This
explains the 13,4,4,... ordering: 13+4 is 17, which means the 16 bit prefixes will line up on the lowest level
of the tree_bitmap in the nodes retrieved from the initial table lookup. Similarly, 13+4+4+4 is 25, so once

Figure 9:  Segmented Tree Bitmap
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again the pole at 24 will line up with the lowest level of the tree_bitmap in the third level nodes of the trie. 

6.1 Software Performance Results

We ran several experiments using our reference implementation on two different platforms: a
296MHz SPARC Ultra-II with 2 MB of cache and a 300MHz Pentium-II PC with 512 KB of L2 cache. All
our experiments used several publicly available prefix databases from public NAPs.   The results are sum-
marized in Table 2 . 

The first two columns of the table contain information about the prefix database that was used and
the number of prefixes in the database. The remaining columns in the table are measurements of the aver-
age time for lookups and for insertion of prefixes in the forwarding database for the two experimental plat-
forms. Three sets of lookup speeds are reported. In the fifth column, we ran a sequence of randomly
generated addresses through the database. Since a considerable number of the randomly generated
addresses do not match any address prefix this results in very high (and unrealistic) lookup rates in excess
of 10 million pps. We have presented this set of results here because other researchers have used this as a
metric of lookup performance [12].   

The sixth column presents results from running a real packet trace through the database. These
results represent what we would actually observe in practice, and include effects of improved cache perfor-
mance resulting from the locality of the traces; the corresponding packets- per-second rate ranges from 5.2
to 8.7 million on the UltraSPARC, and from 4 to 6.5 million on the Pen- tium-II. Finally, for the last lookup
speed (seventh) column, we chose prefixes at random from the prefix database itself, and fed these prefixes
(with trailing 0s) into the database as addresses that need to be looked up. Since the prefixes were chosen
from the database, every address fed into the database would match some prefix, and since they were
selected at random, cache and locality effects are suppressed. This explains why the numbers in this col-
umn are larger than those in the packet trace column. These results, which range from 2.8 to 3.8 million
pps, represent what we would expect to get in a worst-case scenario where packets exhibit no locality in
their destination address field. Finally, the last column of the table lists the average insertion times for a
prefix, computed as the total time to build the database divided by the number of prefixes. 

7 Hardware Reference Design
In this section we investigate the design of a hardware lookup engine based on the Tree Bitmap algo-

rithm. The goal here is not to present comprehensive design details, but to discuss an example design and
illustrate the interesting features that the tree bitmap algorithm provides to a hardware implementation. The
issues discussed include the base pipelined design, hardware based memory management, incremental
updates, and finally an analysis of the design. An area not explored here due to space limitations is the abil-
ity to use tree bitmap, coupled with the presented memory management scheme and path compression to
give impressive worst case storage bounds.

7.1 Design Overview

Prefix 
Database 

Name

No. of 
prefixes 

in 
database

Total 
Allocated 
Memory

Machine 
Type

Avg. 
Lookup 

Time 
(random)

Avg. 
Lookup 

Time 
(pkt. trace)

Avg. 
Lookup 
Time 

(Database)

Avg. 
Insert 
Time

MAE East 40,902 312 KB Ultra-II 87 ns 187 ns 280 ns 2.7 µs

Pentium 95 ns 249 ns 348 ns 3.5 µs

MAE-Weat 19,229 176 KB Ultra-II 82 ns 182 ns 271 ns 2.7 µs

Pentium 84 ns 240 ns 325 ns 3.5 µs

Table 2:  Results from Software Reference Implementation
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The reference design presented in this chapter is a single chip implementation of an IP Lookup
engine using embedded SRAM. The first target of this design is deterministic lookup rates supporting
worst cast TCP/IP over OC-192c link rates (25 million lookups per second). Another target is high speed
and deterministic update rates transparent to the lookup processes and easily handled in hardware. A final
goal is an memory management integrated with updates (so easily handled in hardware) and able to provide
high memory utilization.

Below in Figure 10 is a block diagram of the IP Lookup Engine. The left side of the engine has the
lookup interface with a 32-bit search address, and a return next hop pointer. The lookup engine is pipelined
so there will be multiple addresses evaluated simultaneously. On the right side of the lookup engine is an
update interface. Updates take the form: type {insert, change, delete}, prefix, prefix length, and for inser-
tions or table changes a Next Hop Pointer. When an update is completed the Lookup Engine returns an
acknowledgment signal to conclude the update.    

 Looking inside the block diagram of Figure 10, there are two SRAM Interface blocks. The right
SRAM Interface block connects to an SRAM containing the initial array. The initial array optimization
(Section 5.1) trades off a permanently allocated memory for a reduction in the number of memory accesses
in the main memory. For the reference design the initial array SRAM is 512 entries and 54 bits wide (this
contains a trie node and a 12-bit next hop pointer). The left SRAM Interface block connects to the main
memory of the lookup engine. The reference design has a 38 bit wide interface to the main memory and
supports implementations of up to 128k memory entries in depth. It is important to note that all addressing
in the main memory is done relative to the node size of 38 bits. 

The design parameters based on the terminology of previous chapters are: 9 bit initial stride (So first
9 bits of search address used to index into initial array), 4 bit regular stride, Split Tree Bitmap Optimization,
End nodes (Note the lowest level of the trie must use end nodes and will encompass the last 3 search
address bits), and CAM optimization for end nodes and internal nodes. 

Each node first has a type (trie, end, or cam), and for the basic trie node there is a extending bitmap
and a child address pointer. Additionally there are a couple extra bits for various optimizations like

Figure 10:  Block Diagram of IP Lookup Engine Core
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skip_length for path compression and parent_has_match to flag a match in the parent. 

Figure 11 illustrates an example longest node access pattern for the reference design. In this figure,
the first 9 bits of the search address (bits 0 through 8) are used to index into the initial array memory. At the
indexed location is stored a node (in this illustration it is a trie node) which represents bits 9-12 of the
search address. After the first trie node is fetched from the initial array, 4 trie nodes and then an end node
are fetched from the main memory. The end node points at a result node which contains the next hop
pointer for this example search. 

In the worst case there are 7 memory accesses per lookup slot for search accesses. Devoting 1 out of
every 8 memory accesses to control operations (updates and memory management), there are 8 memory
accesses required per lookup. At 200 Mhz, with full pipelining the lookup rate will be deterministically 25
million per second. 

7.2 Memory Management

A very important part of an IP lookup engine design is the handling of memory management. A com-
plex memory management algorithm requires processor management of updates which is expensive and
hard to maintain. Poor memory utilization due to fragmentation can negate any gains made by optimiza-
tions of the lookup algorithm itself for space savings. Memory management is therefore a very important
part of a lookup engine and requires careful consideration.

For variable length allocation blocks (which most compression trie schemes require) the memory
management problem is more difficult than for fixed sized allocation blocks. The simplest method of han-
dling a small fixed number of possible lengths, is to segment memory such that there is a separate memory
space for each allocation block size. Within each memory space a simple list based memory management
technique is used. The problem with this approach is that it is possible that one memory space will fill while
another memory space goes very under-utilized. This means that the critical point at which a filter insertion
fails can happen with total memory utilization being very low. A possible way to avoid the under utilization
is to employ programmable pointers that divide the different memory spaces. A requirement of this tech-
nique is an associated compaction process that keeps nodes for each bin packed to allow pointer movement.
With perfect compaction, the result is perfect memory management in that a filter insertion will only fail
when memory is 100% utilized. 

Compaction without strict rules is difficult to analyze, difficult to implement, and does not provide
any guarantees with regards to update rates or memory utilization at the time of route insertion failure.
What is needed is compaction operations that are tied to each update such that guarantees can be made. Pre-
sented here is a new and novel memory management algorithm that uses programmable pointers, and only
does compaction operations in response to an incremental update (reactive compaction). This approach is

Figure 11:  Node Sequence For a full 32 bit search
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most effective with a limited number of allocation blocks which would result from small strides.   

For the reference design, there are 17 different possible allocation block sizes. The minimum alloca-
tion block is 2 nodes since each allocation block must have an allocation block header. The maximum allo-
cation block size is 18 nodes. This would occur when you have a 16 node child array, an allocation header
node, and an internal node of the parent. The memory management algorithm presented here first requires
that all blocks of each allocation block size be kept in a separate contiguous array in memory. A begin and
end pointer bounds the 2 edges of a given memory space. Memory spaces for different block sizes never
inter-mingle. Therefore, memory as a whole will contain 17 memory spaces, normally with free space
between the memory spaces (it is possible for memory spaces to abut). To fully utilize memory we need to
keep the memory space for each allocation block size tightly compacted with no holes. For the reference

design there are 34 pointers total, 17  pointers representing the ‘top’ of a memory space and 17  point-
ers representing the ‘bottom’ of a memory space. The first rule for allocating a new free block is that when
an allocation block of a given size is needed, check if there is room to extend the size of the memory space
for that block size either up or down. After allocating the new node, adjust the appropriate end pointer

(either  or ) for the memory space. Second, if the memory space cannot be extended either up or down,
a linear search is done in both directions until a gap is found between two memory spaces large enough for
the desired allocation size. For whatever distance from the free space to the memory space needing an allo-
cation, the free space will have to be passed by copying the necessary number of allocation block in each
memory space from one end to the other. For each memory space the free space must be passed through,
this might require copying one or more allocation blocks from one end to the other and adjusting its point-
ers.    

Figure 12 shows an example of a portion of memory space near the top of main memory with mem-
ory spaces for allocation block sizes of 2, 3, and 4 nodes.      

For the example shown in Figure 12, if an allocation is needed of a block that is 4 nodes in size, it

will need the free space between  and  (we will assume the free space is at least 6 nodes in size). To
do this allocation, two blocks from the 3 node memory space will be moved from the bottom of the 3 node

memory space to the top of that space. Then  and  will be shifted UP 6 memory locations and 
will be shifted UP 4 memory locations making room for the newly allocated block. Note that 2 nodes are
left between the memory space for 3 and 4 nodes. 

For the reference design, the worst case allocation scenario is that the 18 node memory space runs
out of adjacent free space, and all the free space remaining is at the other end of memory between the 2
node memory space and the “top” of memory. With the assumption that memory spaces are organized in
order {allocation block size of 2 nodes, 3 nodes,..., 18 nodes} then for this worst case scenario 34 nodes of
free space must be passed from the far side of the 2 node memory space to the 18 node memory space. The
reason that 34 free nodes must be passed from end to end rather then the exact 18 nodes needed is that as
the free space propagates through memory, the larger nodes (9-17) must still copy 2 nodes from one end of
their memory space to the other to pass at least 18 nodes of free space. A very simple upper bound (overtly
conservative but easy to calculate) on the number of memory accesses to allocate a block can be found by
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Figure 12:  Programmable Pointer Based Memory Management
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counting the number of memory accesses to move 34 nodes across all of memory, and adding six memory
accesses for every block moved to account for the search and modify operation for the parent of each block
moved (explained more below). This results in 1852 memory accesses, which means that if dedicating 1
out of 8 memory access to updates, the worst case memory allocation time is 74 microseconds. 

One of the problems with compaction mentioned above is that when an allocation block is moved in
memory, the parent of the allocation block must have it’s pointer modified to reflect the new position. One
method for finding a parent is to put with every allocation block the search value that would be used to get
to this node. To find the parent of a block, a search is performed until the parent of a node being moved is
found and modified. A secondary use of this header block is for the efficient implementation of path com-
pression. There can be an arbitrary skip between parent and child since at the bottom of the search, a com-
plete address for the block containing the final node is checked.    

Deallocation of blocks is very simple. For the majority of the cases the deallocated block will be
inside the memory space and not on the edge. For this typical case, simply copy one of the blocks at the
edge of the memory space into the now vacant block. Then adjust the appropriate end pointer to reflect the
compressed memory space. If the deallocated block is on the edge of the memory space then all that needs
to be done is pointer manipulation. 

7.3 Updates

For all update scenarios, the allocation time will dominate. In the worst case a block of the maximum
number of nodes and a block with 2 nodes need to be allocated.   In the discussion of memory management
we said that 74 microseconds was the worst case allocation time for a maximum size node. It can similarly
be shown that 16 microseconds is the maximum for a 2 node allocation block. Given the small number of
memory accesses for the update itself, 100 microseconds is a conservative upper bound for a worst case
prefix insertion.   This means that a deterministic updaterate of 10,000 per second could be supported with
this design. Also note that since the updates are incremental, hardware can be designed to handle the
updates from a very high level filter specification. This lowers the bandwidth necessary for updates and
lends itself to atomic updates from the lookup engine perspective; hardware can play use mechanisms to
bypass lookups from fetching data structures that are currently being altered.

7.4 Reference Design Empirical Results

This section explores the empirical results of mapping five databases from the IPMA onto the refer-
ence design. This was done by creating a C program that models the update and memory management algo-
rithms that would be implemented in hardware.   The results are presented in   Table 3 .  

The first row in Table 3 repeats the prefix count for each database, the second row gives the total size
of the table for each database. The third row gives the total number of bits stored for every bit of next hop

Table 3:   Analysis of Empirical Results

Database Name

Mae East Mae West Pac-Bell AADS PAIX

Number of Prefixes 40902 19229 22246 23373 2994

Total Size 1.4 Mbits 702 Kbits 748 Kbits 828 Kbits 139 Kbits

Storage per Next Hop Pointer bit 2.85 3.04 2.8 2.95 3.87

Memory Mgmt.(MM) Overhead 20% 21% 13.5% 19.4% 21%

Total Size without MM 1.1 MBits 551 Kbits 636 Kbits 668 Kbits 109 Kbits

Storage per Next Hop Pointer bit 
(Without MM) {bits}

2.24 2.38 2.38 2.38 3.03
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pointer. This number can be useful for comparing storage requirements with other lookup schemes since
the size of the next hop pointer varies in the published literature for other schemes. The third row summa-
rizes the percent overhead of the allocation headers used for memory management (MM). The next two
rows of Table 3 are the table size and ‘bits per next hop pointer bit’ without the allocation headers counted.
The reason the table size is recalculated without the memory management overhead, is that results for other
IP address lookup schemes traditionally do not contain any memory management overhead. 

The total storage per next hop pointer bit without memory management for Mae East is 2.24 bits per
prefix. For Lulea[3] with the Mae-East database (dated January 1997 with 32k prefixes) 160 KB are
required which indicates 39 bytes per prefix or 2.8 bits per next hop pointer bit (they use 14-bit next hop
pointers). This analysis suggests that the reference design and of Tree Bitmap is similar in storage to Lulea
but without requiring a complete table compression to achieve the results.

The reference design has assumed a range of possible main memory sizes from 16k nodes to 128k
nodes. From the empirical evidence of 2.24 bits per prefix, it can be extrapolated that a 128k node memory
system would be able store 143k prefixes. A 128k node memory system would require 4.8 mbits of SRAM,
and ignoring routing channels and would occupy approximately 50% of a 12mmx12mm die in the IBM.25
micron process (SA-12). The logic to implement the reference lookup engine described here would require
a very small amount of area compared to the SRAM. 

8  Conclusions
We have described a new family of compressed trie data structures that have small memory require-

ments, fast lookup and update times, and is tunable over a wide range of architectures.   While the earlier
Lulea algorithm [3] is superficially similar to ours in that it uses multibit tries and bitmaps, our scheme is
very different from Lulea. We use two bitmaps per trie node as opposed to one, we do not use leaf pushing
which allows us to bound update times, we use a completely different encoding scheme for internal bit
maps which requires a more involved search algorithm than finding the first bit set, and we push prefixes
that are multiples of stride lengths to be associated with the next node in the path, even if it means creating
a new node. 

To do the complete processing in one memory access per trie node (as opposed to the three memory
accesses required by Lulea), we keep the trie node sizes small by separating out the next hop information
into a separate results node that is accessed lazily at the end of the search. We also described several further
optimizations including split tree bitmaps and segmented bit maps to further reduce trie node size. None of
these techniques appear in [3] or any earlier schemes.

We have also described a model for modern memory architectures that together with the family of
Tree Bitmap variants allows us to pick the required algorithm for a given architecture.   This model pro-
vides us with knowledge of the optimal burst size which in turn determines the stride size. Recall that for a
particular set of optimizations, the stride size defines the bit map size and hence the burst size.   The model
also directly indicates the degree of pipelining required for maximum memory bandwidth utilization.

Using these trie algorithms and memory models, we described a competitive software algorithm and
a hardware reference implementation. The hardware reference implementation presents a new memory
management scheme (reactive compaction) that can be integrated with updates to give high memory utili-
zation and easy table management (possibly in hardware). The reference implementation was shown to
support over a hundred thousand prefixes with on-chip SRAM, support 25 million lookups per second
(OC-192c), and guarantees of at least 10k updates per second. The memory management and updates can
be hardware automated to result in an independent easy to manage lookup engine.

Together, our algorithms provide a complete suite of solutions for the IP lookup problem from the
low end to the high end.   They have the desired features of CAM solutions while offering a much higher
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number of supported prefixes.
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