A Multicore Processor Designed For PetaFLOPS Computation

Weiwu Hu

Institute of Computing Technology, Chinese Academy of Sciences

Loongson Technologies Corporation Limited

hww@ict.ac.cn

Contents

- **■** Background
- The Scalable Godson-3 Multicore Architecture
- **■** The Vector Extension of the CPU Core
- **■** HPCs Based on Godson-3

Godson is the academic name of LoongsonTM

TOP10 in 2008.11

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz , Voltaire Infiniband / 2008 IBM	129600	1105.00	1456.70	2483.47
2	Oak Ridge National Laboratory United States	Jaguar - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.	150152	1059.00	1381,40	6950.60
3	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz / 2008 SGI	51200	487.01	608.83	2090.00
4	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
5	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	450.30	557.06	1260.00
6	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38	2000.00
7	NERSC/LBNL United States	Franklin - Cray XT4 QuadCore 2.3 GHz / 2008 Cray Inc.	38642	266.30	355.51	1150.00
8	Oak Ridge National Laboratory United States	Jaguar - Cray XT4 QuadCore 2.1 GHz / 2008 Cray Inc.	30976	205.00	260.20	1580.71
9	NNSA/Sandia National Laboratories United States	Red Storm - Sandia/ Cray Red Storm, XT3/4, 2.4/2.2 GHz dual/quad core / 2008 Cray Inc.	38208	204.20	284.00	2506.00
10	Shanghai Supercomputer Center China	Dawning 5000A - Dawning 5000A, QC Opteron 1.9 Ghz, Infiniband, Windows HPC 2008 / 2008 Dawning	30720	180.60	233.47	

Top10 in 2009.11

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
2	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.50
3	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	98928	831.70	1028.85	
4	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
5	National SuperComputer Center in Tianjin/NUDT China	Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT	71680	563.10	1206.19	
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0 GHz/Nehalem EP 2.93 Ghz / 2009 SGI	56320	544.30	673.26	2348.00
7	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
8	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
9	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38	2000.00
10	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2009 Sun Microsystems	41616	423.90	487.74	

Top10 in 2010.6

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
2	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120640	1271.00	2984.30	
3	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.50
4	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	98928	831.70	1028.85	
5	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon Westmere 2.93 Ghz, Infiniband / 2010 SGI	81920	772.70	973.29	3096.00
7	National SuperComputer Center in Tianjin/NUDT China	Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT	71680	563.10	1206.19	
8	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
9	Argonne National Laboratory United States	Intrepid - Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
10	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2010 Sun Microsystems	42440	433.50	497.40	

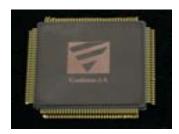
What Next?

No. 1?

Design CPU for HPCs!

CPU Plan of China

- National Strategic Product
 - Supported by the National S&T Major Project for CPU
- 10th Five Year Plan (2001-2005):
 - Startup and key technology research
 - Four-Issue OOO Architecture, 1.0GHz
- 11th Five Year Plan (2006-2010):
 - From emulation to innovation, low- to high-end, research to product
 - Multi-core CPU with leading performance, CPU company setup
 - Desktop, servers, and HPC products based on domestic designed CPU
- 12th and 13th Five Year Plan (2011-2020):
 - Build a new ecosystem to support the IT industry in China
 - Start from National Security, education, e-government,

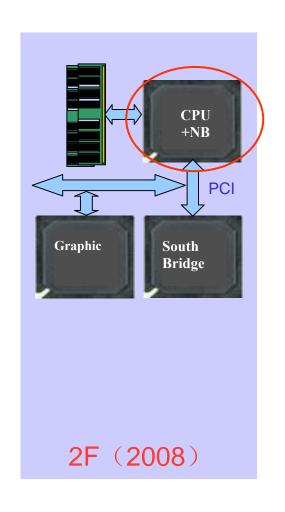

National Sci.&Tech. Major Project

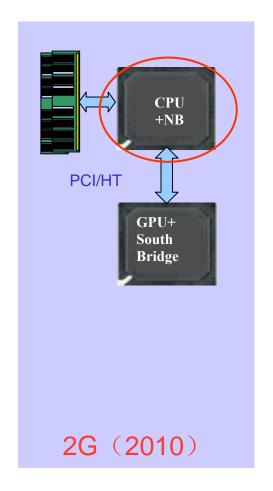
- Part of the National Mid-Term Plan
- 16 Major Projects, each fund more than USD 10B from 2006-2020
 - CPU and OS
 - VLSI process technology
 - Next-generation (4G) wireless network
 - High-end digital machine tool
 - Advanced nuclear fission power plant
 - Water pollution control and treatment
 - Large aircraft
 - High-resolution earth-observation system
 - Manned space flight and lunar exploration

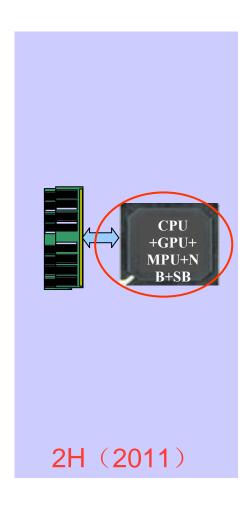
—

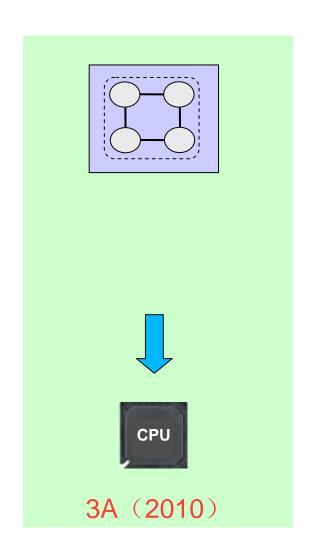
Godson CPU Briefs

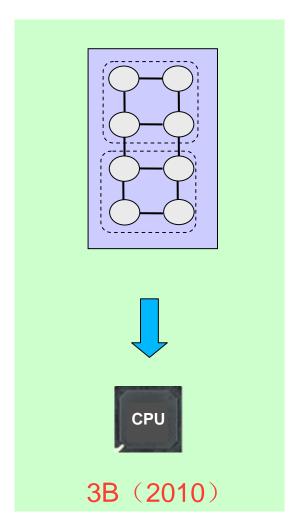
- Research Stage: started in 2001.
 - **◆**The 32-bit Godson-1 in 2002 is the first CPU in China
 - **◆**The 64-bit Godson-2B in 2003.10
 - **◆**The 64-bit Godson-2C in 2004.12
 - **◆**The 64-bit Godson-2E in 2006.03
 - **Each Triple the performance of its previous one**
 - ◆SPEC int2000 and SPEC fp2000 of Godson-2E> 500
- Product Stage: started in 2008
 - **◆**Godson-2F is the product version of Godson-2E
 - **◆**The 4-core Godson-3A product in 2010

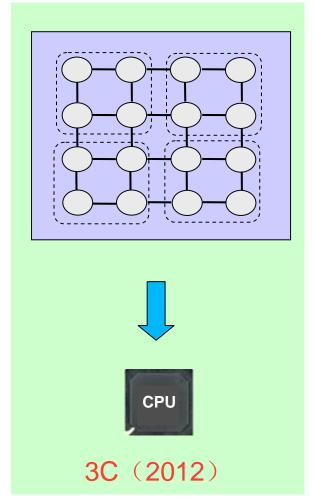




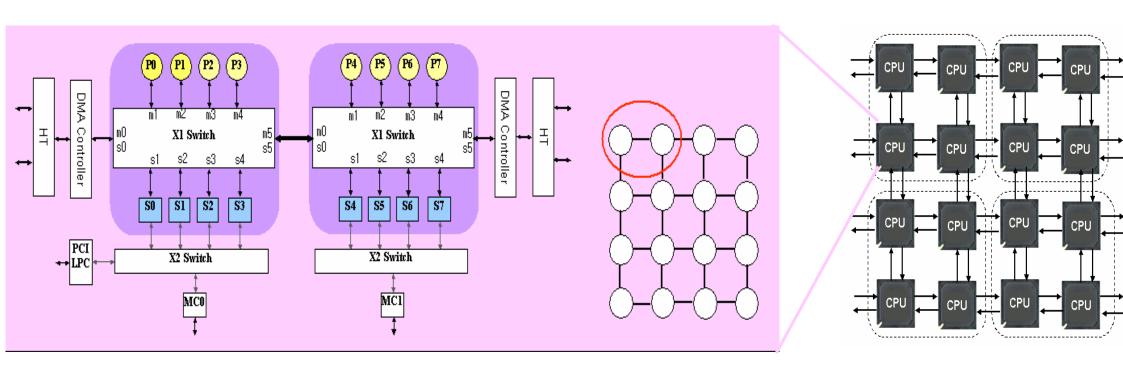



Low end roadmap: From CPU to SOC





High end roadmap: More cores on a chip



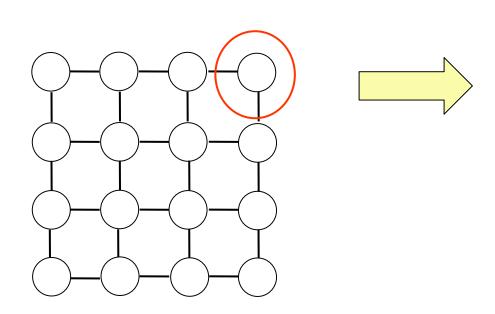
Contents

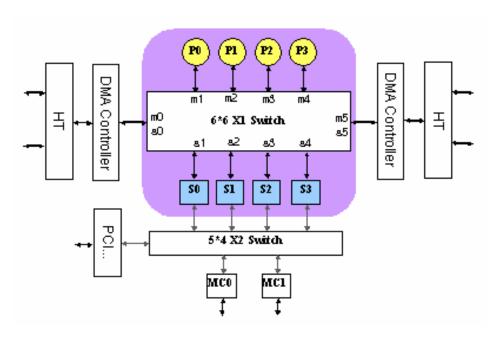
- **■** Background
- **The Scalable Godson-3 Multicore Architecture**
- **■** The Vector Extension of the CPU Core
- **■** HPCs Based on Godson-3

Godson-3 Scalable Architecture

- Scalable interconnection network:
 - Crossbar (intra-node) + Mesh (inter-node)
- Shared L2 Cache, on-chip memory controller
 - Directory-based cache coherence protocol for intra and inter chip CC

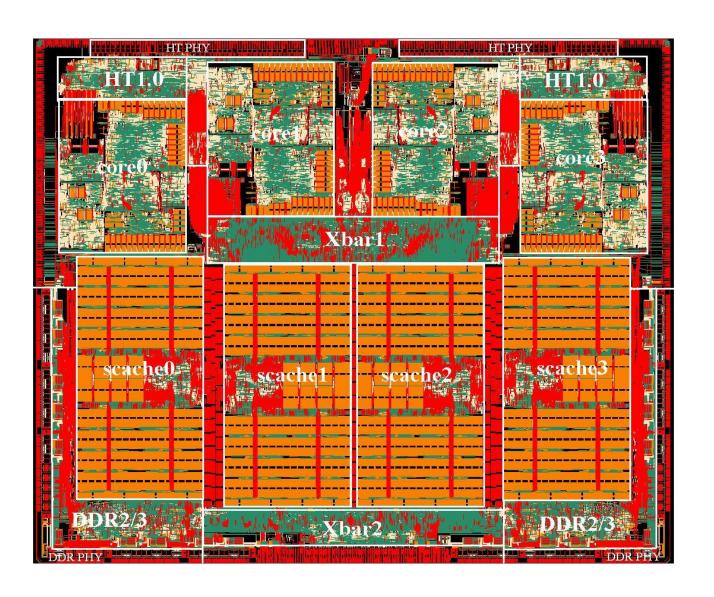
4-core Godson-3A


4 four-issue 64-bit Core

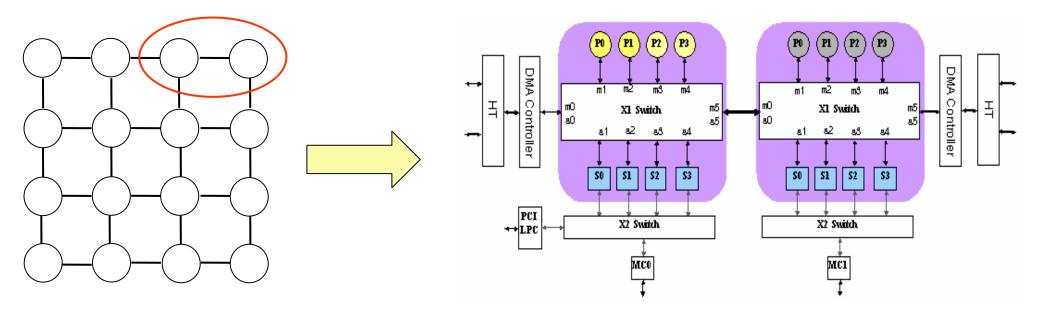

1.0GHz@65nm

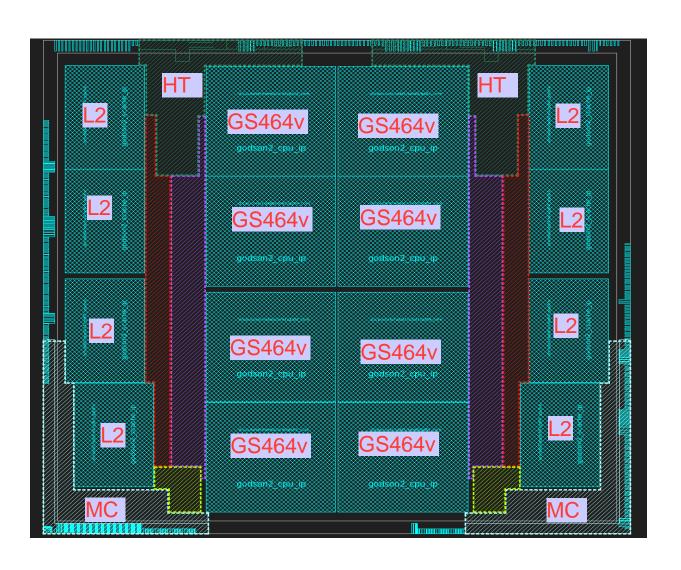
16GFLOPS@15W

2 DDR3, 2 HT Controllers


In product stage

Layout of Godson-3A




8-core Godson-3B

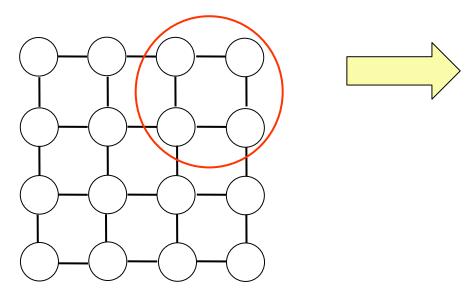
- 8 four-issue 64-bit core
- 2*256-bit Vector Ext. per core
- 1.0GHz@65nm
- **128GFLOPS@40W**
- 2 DDR3, 2 HT Controllers

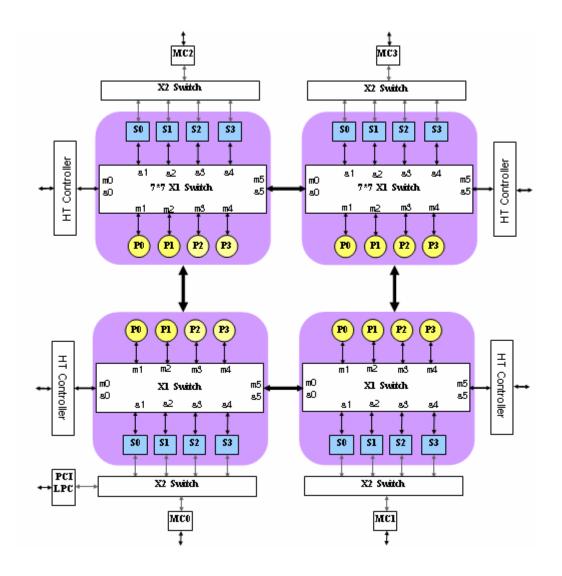
Taped out 2010.5

Layout of Godson-3B

16-core Godson-3C

16 four-issue 64-bit Core

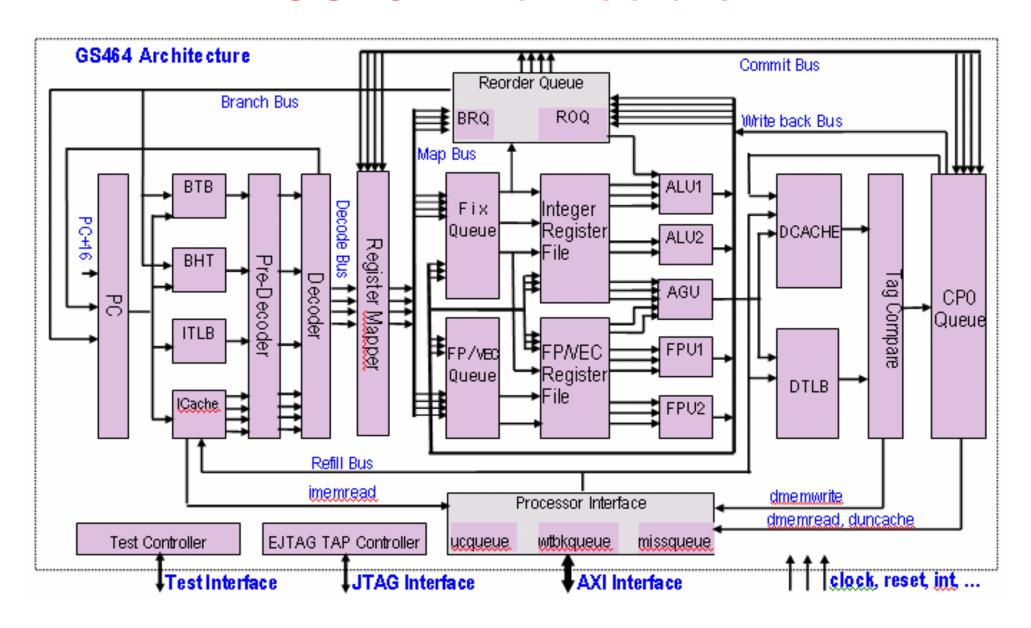

2*256-bit Vector Ext. per core


1.5GHz@28nm

384GFLOPS@15W

4 DDR3, 4 HT Controllers

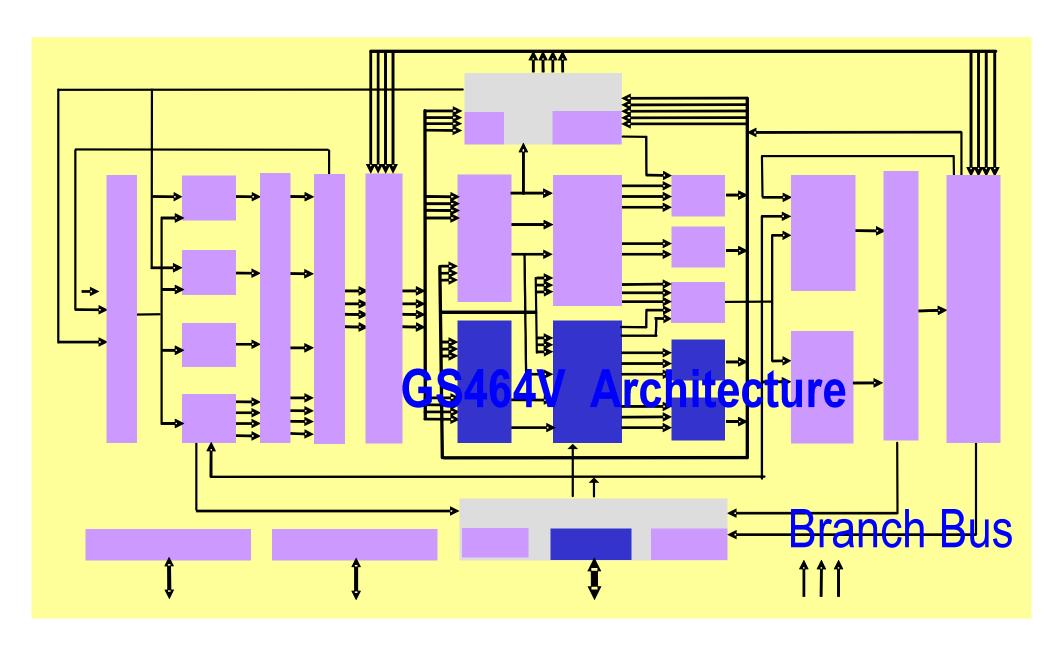
To be taped out 2011


Contents

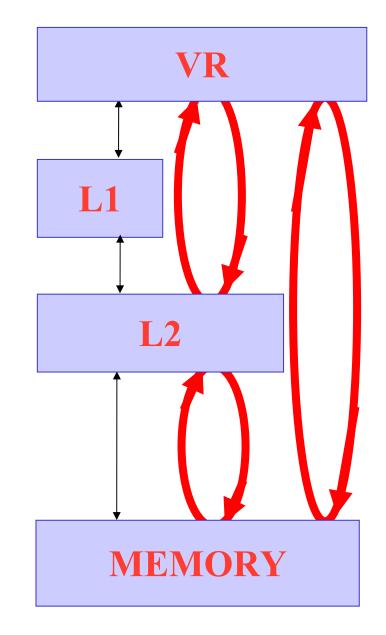
- **■** Background
- **■** The Scalable Godson-3 Multicore Architecture
- **■** The Vector Extension of the CPU Core
- **■** HPCs Based on Godson-3

The State-of-Art GS464 CPU Core

- MIPS64 compatible, 200+ instructions for X86 emulation
- **■** Four-issue 64-bit superscalar OOO pipeline
- Two fix, two FP, one memory units
- 64KB icache and 64KB dcache, 4-way
- 64-entry TLB, 16-entry ITLB
- **■** Directory-based cache-coherence
- Parity check for icache, ECC for dcache

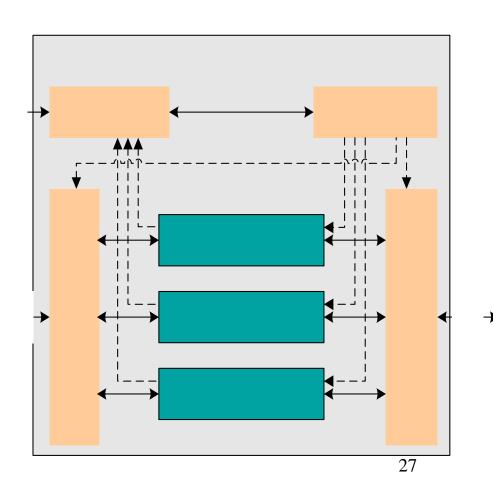

GS464 Architecture

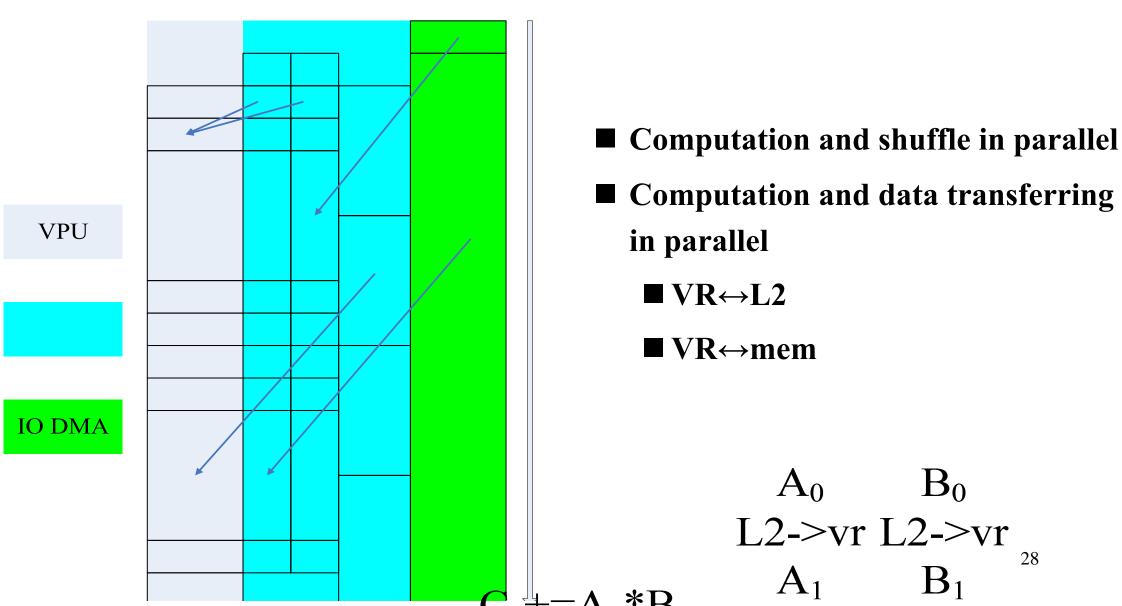
GS464V Architecture Features


- **■** Keeps all GS464 features
- Extend each 64-bit FP unit to 256-bit SIMD vector unit
 - **◆**Two vector units
 - **◆**Each core has eight 64-bit MACs
 - **◆**Compatible with MIPS64 FP instruction
- 128-entry 256-bit register file
- 300+ SIMD instructions (Linpack, FFT, media.....)

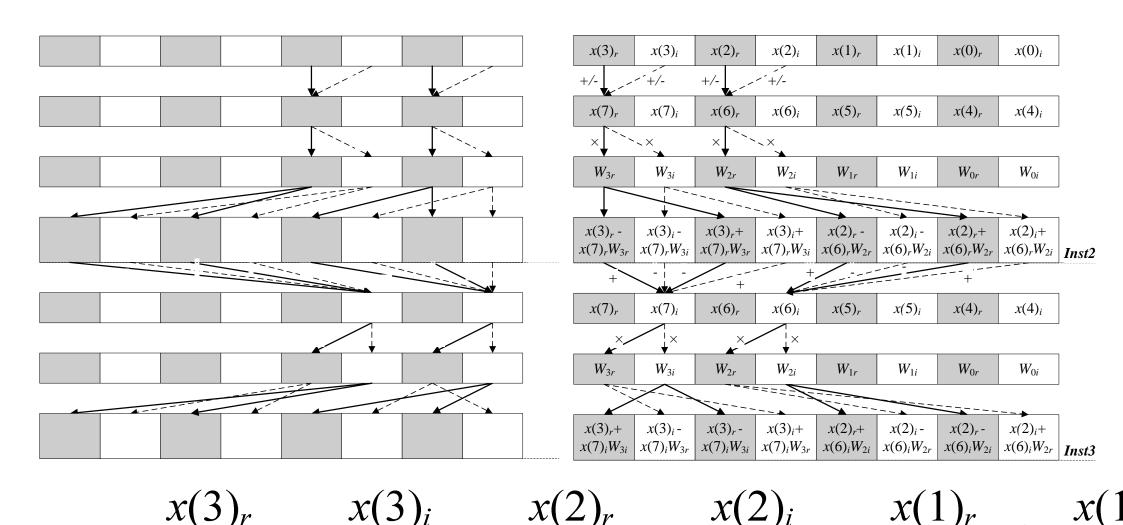
Microarchitecture of GS464V

Feeding the Starving Vector Unit

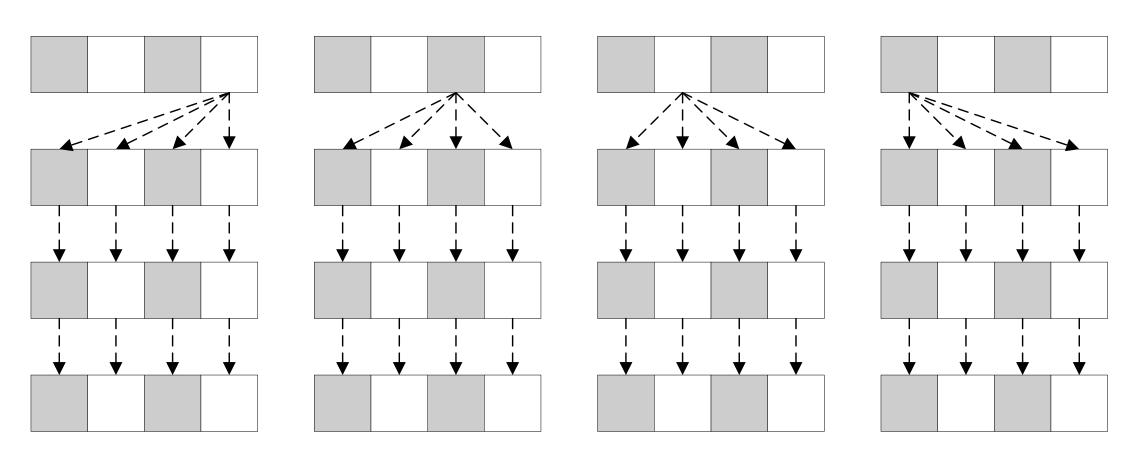

- With limited bandwidth, how to provide enough data in required format to feed the vector unit?
 - **◆**Use the bandwidth more efficiently
- **■** Special data link for vector unit
 - **◆**Data moves in parallel with computation
 - **◆**Reorganizing data in the way from memory/cache to VR, as required by matrix computation, digital signal processing, media processing, etc.


Godson Super Link (GSL)

■ Direct & reconfigurable data transfer btw. cache/memory and VR


- **♦**Matrix transposing
- **♦**Bit revert
- **◆Entropy decoding**
- **♦....**
- Memory access coprocessor
 - **♦**Three Godson Super-Link
 - **♦Flow control among GSLs**
 - **♦** Synchronize with GS464V

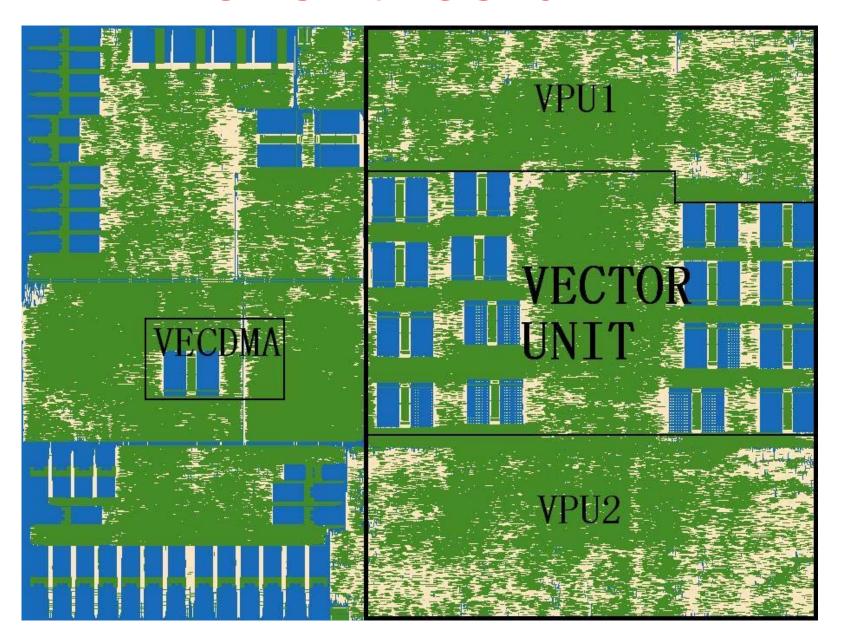
Parallel data movement and computation: Linpack as an example


Computation and Shuffling in one Instruction: Vector Instruction for FFT


+/-

+/_

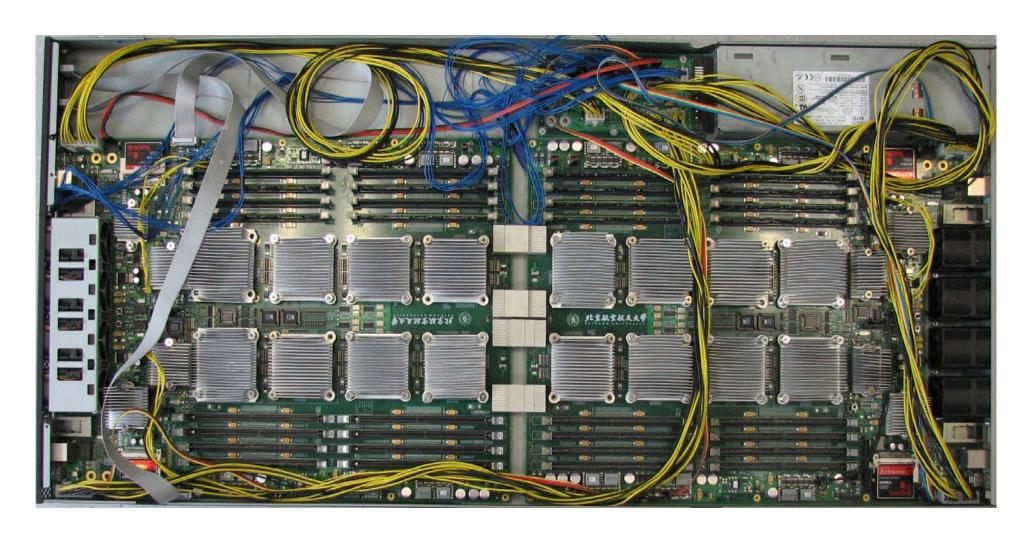
Computation and Shuffling in one Instruction: Vector Instruction for Linpack


Computation and Shuffling in one Instruction: Vector Instruction for Media

Simulation Results

- With RTL simulation, GS464V achieves excellent performance
- Eight-core godson-3B (64 MACs, 2 DDR3) achieves
 - ◆>93% of peak performance for matrix multiplication
 - ◆>87% of peak performance for 1024 point complex FFT (0.37us for 1024 point floating point FFT at 1GHz)
- 1080p high definition H.264 decoding with single core at 1GHz
 - ♦>200 frames per second

GDSII of GS464V


Contents

- **■** Background
- **■** The Scalable Godson-3 Multicore Architecture
- **■** The Vector Extension of the CPU Core
- **HPCs Based on Godson-3**

HPCs based on Godson-3

- **■Personal TeraFLOPS HPC**
 - Desktop HPC
- **■**PetaFLOPS in 2011 based on Godson-3B
 - **10,000 Godson-3B Chips**
- ■10 PetaFLOPS in 2013/2014 based on Godson-3C
 - **30,000 Godson-3C Chips**

1U16P Board for HPC

- 1U2T with Godson-3B
- 1U6T with Godson-3C

Conclusion

- Scalable Godson-3 Multi-core Architecture
- ■Aggressive vector extension to achieve high performance
- ■Godson Super Link helps efficient usage of limited bandwidth
 - Computation and data movement in parallel
 - Reorganize data in data movement

Thanks