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Abstract

Both managed and native languages use memory safety techniques to ensure pro-
gram correctness and as a security defense. A critical element of memory safety is
to initialize newly allocated memory to zero before making it available to the pro-
gram. In this thesis I explore the performance impact of zero initialization and show
that it comes with a substantial overhead. I also show that this overhead can be
largely removed with new designs that exploit both the language semantics of zero
initialization and the hardware semantics of memory hierarchies

Programmers increasingly choose managed languages to develop large scale ap-
plications. One of the reasons is that managed languages offer automatic memory
management (garbage collection), which protects against memory leaks and dan-
gling pointers. Garbage collection encourages programs to allocate large numbers
of small and medium size objects, leading to significant overheads of zero initializ-
ing objects — on average the direct cost of zeroing is 4% to 6% and up to 50% of
total application time on a variety of modern processors. Zeroing incurs indirect
costs as well, which include memory bandwidth consumption and cache displace-
ment. Existing virtual machines (VMs) either: a) minimize direct costs by zeroing in
large blocks, or b) minimize indirect costs by integrating zeroing into the allocation
sequence to reduce cache displacement.

This thesis first describes and evaluates zero initialization costs and the two ex-
isting designs. The microarchitectural analysis of prior designs inspires two better
designs that exploit concurrency and non-temporal cache-bypassing store instruc-
tions to reduce the direct and indirect costs simultaneously. The best strategy is to
adaptively choose between the two new designs based on CPU utilization. This ap-
proach improves over widely used hot-path zeroing by 3% on average and up to 15%
on the newest Intel i7-2600 processor, without slowing down any of the benchmarks.

These results indicate that zero initialization is a surprisingly important source
of overhead in existing VMs and that our new software strategies are effective at
reducing this overhead. These findings also invite other optimizations, including
software elision of zeroing and microarchitectural support.
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Chapter 1

Introduction

Much of the work presented in this thesis has been submitted for publication as the
paper “Why Nothing Matters: The Impact of Zeroing” [Yang et al., 2011].

1.1 Thesis Statement

The overhead due to zero initialization is significant and will grow as the pressure on
shared memory subsystems is increasing on chip multi-processors (CMPs). I believe
this overhead can be substantially reduced by a) avoiding locality in favor of zeroing
with instructions that bypass the cache, and b) exploiting available parallelism.

1.2 Introduction

Memory safety is an increasingly important tool for the correctness and security of
modern language implementations. A key element of memory safety is initializing
memory before giving it to the program. In managed languages, such as Java, C#,
and PHP, the language specifications stipulate zero initialization. For the same rea-
son, unmanaged native languages, such as C and C++, have begun to adopt zero
initialization to improve memory safety [Novark et al., 2007]. We show that existing
approaches of zero initialization are surprisingly expensive. On three modern IA32
architectures, the direct cost is 4% to 6% on average and up to 50% of all cycles in a
high-performance Java virtual machine, without accounting for indirect costs due to
cache displacement and memory bandwidth consumption.

Hardware trends towards chip multiprocessors (CMPs) are exacerbating these
expenses because of their increasing demands on memory bandwidth [Burger et al.,
1996; Liu et al., 2004; Hsu et al., 2006; Rogers et al., 2009; Yu and Petrov, 2010; Inoue
et al., 2009; Zhao et al., 2009] and pressures on shared memory subsystems, such as
shared on-chip caches and memory controllers. For example, Zhao et al. and Inoue
et al. show that the memory bandwidth needs of both managed and unmanaged lan-
guages are a large performance bottleneck on CMPs [Zhao et al., 2009; Inoue et al.,
2009]. If architects add processor cores without commensurate provision of shared
memory resources (memory bandwidth and shared caches), the overhead of exist-
ing zero initialization techniques is likely to grow. Although hardware parallelism
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2 Introduction

increases pressure on the memory system, it offers an optimization opportunity as
well. In this case, it provides the opportunity to offload critical system services that
must be done in a timely manner.

Existing zero initialization strategies face two problems: the direct cost of exe-
cuting the requisite zeroing instructions and the indirect cost of memory bandwidth
consumption and cache pollution. The two standard designs today are bulk zero-
ing and hot-path zeroing [Grcevski et al., 2004]. Bulk zeroing attacks the direct cost
of zero-initialization by zeroing memory in large chunks and exploiting hardware
prefetching, loop optimizations, and zeroing a cache line or more at a time. The
drawback of this approach is that it introduces a significant reuse distance between
when the VM zeroes a cache line and when the application first uses the cache line.
This distance results in increased memory traffic and cache pollution. Another popu-
lar approach is hot-path zeroing, which injects zeroing instructions into the allocation
sequence, attacking indirect costs by minimizing reuse distance. The drawback of
this approach is that it expands and complicates the performance-critical allocation
sequence and removes opportunities for hardware and software optimization of the
instructions that perform the zeroing. The two designs are thus at poles, addressing
either, but not both, of the direct and indirect costs of zeroing.

We introduce two better design points to reduce overheads by exploiting both
the language semantics and the hardware semantics. The particular semantics of
zero-initialization provide the flexibility to zero the memory at different times with
different instructions. By understanding the CPU architecture, the run-time system is
able to choose better designs dynamically. Our first design targets the indirect costs
of zero initialization with non-temporal instructions. The second targets the direct
costs by using concurrency to offload zeroing from the application’s critical path. By
dynamically choosing between these two solutions based on CPU utilization, we
further reduce the cost of zeroing.

Non-temporal stores go directly to memory, bypassing the cache hierarchy. De-
signed for streaming applications, they avoid the cache-displacing effect of streaming
writes. Because a non-temporal write does not miss in the cache, it does not generate
a memory fetch, and therefore reduces memory traffic when there is no reuse. How-
ever, non-temporal writes have weak memory order and force the eviction of any
cache line that is targeted by the write. If not used carefully, non-temporal writes are
counterproductive. Concurrent zeroing is attractive when there is a surplus of hard-
ware parallelism, as is becoming more common. However, to perform well, concur-
rent zeroing depends on synchronization, load balancing, and scheduling between
the zeroing thread(s) and the application thread(s). When hardware parallelism is
scarce concurrent zeroing is counterproductive.

We perform a detailed quantitative study of zero initialization. We study two
existing and two new design points. We evaluate our work in the context of a
high performance Java Virtual Machine (JVM) using 20 benchmarks drawn from
DaCapo [Blackburn et al., 2006], SPECjvm98 [SPEC corporation, 1999], and pjbb2005

executing on three mainstream CMPs: an Intel Core2 Quad Q6600, an AMD Phenom
II X6 1055T, and an Intel Core i7-2600. We measure the allocation rates of both real
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benchmarks and micro-benchmarks to establish the performance impact and limits of
the various microarchitectures. For typical Java benchmarks on the i7-2600, existing
zero initialization consumes 4% of CPU cycles, in addition to indirect costs. Com-
pared with widely used hot-path zeroing, an adaptive policy built with our two new
designs improves performance by 2.7% on average and by up to 15% on the i7-2600.
Our technique is most effective on highly allocating memory intensive benchmarks,
which stress the memory system the most.

Despite existing designs having overheads in the same ballpark as the cost of
garbage collection, the other key element of memory safety, very little research has
explored the cost of zeroing or alternative solutions. Our analysis sheds new light
on the problem and the tradeoffs inherent to any solution. For example, hot-path
zeroing has a lower reuse distance than bulk zeroing, but the entanglement of zeroing
and allocation adds direct and indirect costs that negate the advantage of better data
locality, especially on new CMPs. We demonstrate that non-temporal stores mitigate
much of the cost of bulk zeroing, and make most efficient use of the available memory
bandwidth. We show that using hardware parallelism to perform concurrent zero
initialization hides the direct cost of zeroing for low CPU utilization applications.
Because exploiting hardware parallelism when it is available reduces the overhead of
zeroing, the best strategy adaptively chooses between concurrent zeroing and non-
temporal bulk zeroing. Nonetheless, the total number of cycles devoted to the task
of zero-initialization is often substantial, which suggests that further optimization of
zeroing would be useful.

The contributions of this thesis are thus: (1) the detailed study of the cost of zero
initialization, (2) identifying that zero initialization is often expensive on modern
processors, (3) identifying and evaluating two new designs that together eliminate
most of the overhead of zero initialization, and (4) pointing to the potential of future
hardware and software approaches to further reduce the cost of zero initialization.

1.3 Thesis Outline

Chapter 2 introduces the motivation of zero initialization, provides an overview of
hardware memory systems and the memory management mechanism in Jikes RVM.
It also discusses related work. Chapter 3 describes the detail of four designs and our
adaptive policy which utilizes the two best designs. Chapter 4 explains the experi-
mental environment and the configuration of the systems we use. Chapter 5 analyses
results of designs on three mainstream x86 CMPs. Finally, Chapter 6 concludes the
thesis and describes the future work.
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Chapter 2

Background and Related Work

Memory subsystems on modern processors are designed to sustain intense mem-
ory activity when accesses exhibit either: a) a high degree of temporal locality, or
b) no temporal locality whatsoever. A cache hierarchy ensures that accesses with
good temporal locality have low latency, while non-temporal streaming instructions
go directly to memory with higher memory throughput, ensuring that they do not
displace useful data in the cache. Unlike existing zero initialization designs using
temporal instructions to zero, I propose better designs that exploit concurrency and
non-temporal instructions. This chapter introduces: a) the non-temporal store in-
structions, b) the motivation of zero initialization, and c) memory management in
Jikes RVM,

Section 2.1 discusses the motivation of zero initialization. Section 2.2 describes
the memory allocation mechanism used in Jikes RVM. Section 2.3 explains the back-
ground of memory subsystems on modern processors. Section 2.4 discusses the prior
published and unpublished (known to us through open-source implementations) re-
lated work.

2.1 Zero Initialization

Managed languages such as Java and C# have long touted memory safety as a soft-
ware engineering and security benefit, and native languages, such as C and C++, are
now embracing memory safety using compiler and library support [Novark et al.,
2007]. Data initialization and pointer disciplines are the principle techniques for
ensuring memory safety. Pointer safety disciplines protect against unintended or
malicious access to memory by ensuring that the program accesses only valid refer-
ences to reachable objects. Pointer safety is achieved through a combination of lan-
guage specification and implementation techniques that enforce pointer declarations
in static or dynamic type systems. The language implementation forbids reference
forging, checks array indices, and forbids dangling references. It also ensures that all
data is initialized before the program reads it. The language runtime typically zeros
all memory systematically before making it available to the program. This approach
is conservative—a program will often explicitly initialize the data before use as well,
rendering the runtime’s zeroing redundant. Both pointer safety and data initializa-
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Global slow-path cursor

Thread local hot-path cursor

Mark-region mature space

Copying nursery space

Evacuating collection

Figure 2.1: Generational Immix collector.

tion offer software engineering and security benefits, but they increase the number
of memory operations.

2.2 Jikes RVM/MMTk

This section briefly describes the Jikes RVM [Alpern et al., 2005] memory manage-
ment [Blackburn et al., 2004b] (MMTk) mechanism. Jikes RVM is a highly tuned
research JVM. It uses the generational Immix collector by default [Blackburn and
McKinley, 2008]. Figure 2.1 shows the two spaces of a generational immix collector:
the copying nursery space and the mark-region mature space. Generational Immix
is a stop-the-world collector. It allocates objects into a nursery using bump-pointer al-
location. When the nursery fills, it copies all live objects into a mature mark-region
space. Memory allocated in the nursery space must be initialized as zero. However,
it is not necessary to zero memory allocated in the mature space since objects are
explicitly initialized by the act of copying them from the nursery into the mature
space.

The nursery space allocator design consists of a thread-local, unsynchronized hot
path, and a global, synchronized slow path [Blackburn et al., 2004b]. Each thread
thus allocates into a local buffer without any synchronization. This thread-local allo-
cator design is very common and is used in virtually all commercial garbage collec-
tors and explicit memory managers. When a thread exhausts a block, it executes a
synchronized slow path, which either provides a free block or throws an out of mem-
ory exception. Figure 2.1 shows a snapshot of the spaces. Threads acquire blocks in
the slow-path by updating a global slow-path cursor. Objects are created inside blocks
by updating a thread local hot-path cursor without any synchronization. In Figure 2.1,
there are two threads. The first one allocated the first block in the slow-path and
created three objects in it. Another thread has already consumed two blocks and
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Figure 2.2: On-chip memory hierarchy of Nehalem.

intended to allocate the third one. However, this allocation triggered the nursery
collection since there was not enough memory. The copying collector then evacuated
survivors from the nursery space into the mark-region space, as shown in Figure 2.1.
By default, Jikes RVM zero-initializes space by bulk zeroing 32KB blocks of memory
on the allocation slow path.

2.3 Memory Hierarchy

Memory systems must make a trade-off between size, speed and price. Unlimited
fast memory is desirable but prohibitively expensive. Based on the observation that
most programs tend to exhibit temporal and spatial locality, memory resources are
organized as layers to mimic a fast, cheap, and large memory system. Fast, expen-
sive and small caches reside at the top of the memory hierarchy to cache recently
referenced data. Slow, cheap and large dynamic memory holds programs’ working
sets and provides data when references miss higher levels.

Figure 2.2 shows the memory hierarchy of the Nehalem micro-architecture, a
mainstream CMP designed by Intel. On Nehalem, each core has a private 32 KB L1
instruction cache, a 32 KB L1 data cache, and an exclusive 512 KB level 2 cache. Four
cores on the chip share an inclusive 8 MB last level cache. Compared with on-chip
caches, dynamic memory is much larger but slower. The latency to reference L1, L2,
and L3 caches is 4, 10, and 38 cycles [Molka et al., 2009] respectively. Fetching data
from dynamic memory to caches takes about 65 nano-seconds (189 cycles on 2.8 GHz
CPU).

To further maximize the performance of programs that exhibit good temporal
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locality, modern caches use write-back, write-allocate semantics. On a write hit, the
hardware writes the new data and marks the cache line as dirty. On a write miss,
the hardware first fetches the cache line, and then writes the new data and marks it
as dirty. When cache lines are evicted or synchronized with lower-level caches, dirty
lines are written back to the next lower level of the hierarchy. For memory references
that exhibit good temporal locality, write-back caches work well by reducing write
transactions and speeding up memory references.

To maximize the performance of programs that exhibit good spatial locality,
modern processors prefetch memory aggressively. After the hardware prefetching
unit detects sequential access patterns by monitoring memory references, it issues
prefetching requests to fetch data from the memory which is likely to be referenced
later.

Non-temporal store instructions Programs sometimes exhibit poor temporal lo-
cality, such as when copying, or initializing large memory blocks. Due to the per-
formance gap between the dynamic memory and caches, the performance of such
streaming references is dominated by memory bandwidth. Write allocation limits
memory throughput and pollutes the cache since in the worst case every write in ad-
dition to generating a store to memory, first requires a cache line load from memory,
which is useless when the line will not be read.

To improve the performance of streaming stores and avoid cache pollution, x86
processors provide non-temporal store instructions. These instructions bypass the
cache to avoid cache pollution, and directly write to memory. Because non-temporal
instructions avoid fetching data from dynamic memory to cache, streaming stores
with these instructions fully utilize memory bandwidth, leading to higher memory
throughput.

Non-temporal store instructions also have some downsides. Clearly, they are not
suitable if the program will access the data again soon after the write, since the data
will be uncached. Moreover, to maintain cache coherency, the semantics of non-
temporal store instructions usually include explicitly evicting any copy of the line
from all caches. Non-temporal stores also typically come with weak memory order-
ing that requires the addition of explicit memory fences to enforce strong memory
ordering. The x86 processors do not reorder temporal stores. However, non-temporal
stores are allowed to be reordered with other temporal and non-temporal stores. If
programs want to maintain the order between non-temporal stores or the memory
order between non-temporal stores and other temporal stores, memory fences or
memory store fences are required to be inserted to make non-temporal stores glob-
ally visible by other cache agents.

2.4 Related work

ISA Support. The x86 [Intel] instruction set architecture (ISA) includes non-temporal
instructions that programs can use for reads and writes that have no temporal local-
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ity. Non-temporal store instructions, e.g., movnti and movntdq, bypass the cache
hierarchy. They send writes directly to memory via a write combining buffer, by-
passing the cache. When used effectively, they have two benefits: a) they do not
displace other data in the cache, and b) they maximize memory bandwidth effi-
ciency because, unlike normal stores that can generate one fetch and one write-back
transaction, non-temporal stores only generate one write transaction.

On some processors, including the i7-2600 we use in our experiments, these ben-
efits achieve significantly higher write bandwidth than regular writes.

The PowerPC ISA includes a data cache block zero (dcbz) instruction that zeros
a cache-line directly without fetching it from memory [Sikha et al., 1994]. The pro-
cessors designed by Azul [Click, 2009] have a similar instruction, (CLZ), that directly
zeros a cache line without fetching old memory, but uses a more relaxed memory
consistency model.

Efficient Zeroing. Programming language and OS implementations highly opti-
mize zeroing, memory copying, and memory initialization. For example, the stan-
dard C library provides the memset() function to initialize memory. Since memset()
has no semantic knowledge of the reuse distance between the initialized memory
and its next use, it resorts to a simple heuristic to switch to non-temporal instruc-
tions. For x86 processors, GNU’s C library (glibc) [GNU] uses non-temporal stores
when the region being zeroed is larger than the processor’s last level cache. Oth-
erwise it uses standard (temporal) writes. The open64 compiler [AMD] provides a
-CG:movnti=N flag. When it writes a memory block larger than N KB, the compiler
generates non-temporal store instructions.

Zero Initialization Strategies. We examined the details of zero initialization in the
open source versions of Oracle HotSpot [B.Kessler, 2007] VM. We extracted further
details of the Azul [Click, 2009] and IBM J9 [Grcevski et al., 2004] JVMs from talks and
publications. Each of these VMs zero initializes memory on the allocation hot path,
minimizing reuse distance between initialization and first use. Where practical they
also selectively zero only those parts of the objects that are not explicitly initialized
when they are constructed. To save memory bandwidth, the J9 and Azul VMs use
dcbz and CLZ instructions when targeting PPC and Azul hardware, respectively.

Jikes RVM [Blackburn et al., 2004a] and optionally HotSpot both bulk zero mem-
ory before providing it to the allocator. This approach forgoes temporal locality
between initialization and first use, but minimizes the direct cost of zeroing by using
a tight loop that can use coarse-grained zeroing instructions and that activates the
hardware prefetcher. We found that the HotSpot implementation of bulk zeroing is
extremely naive. We were able to substantially improve its performance by using
memset() to perform the zeroing.
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2.5 Summary

This chapter introduced non-temporal store instructions, explained the motivation
for zero initialization, and discussed approaches different runtime systems have
adopted. In the next chapter, I will discuss zero initialization designs in detail.



Chapter 3

Design and Implementation

In this chapter, I explore four design points for zero initialization. The first two,
allocation-time (hot-path) zeroing and bulk zeroing, are widely deployed today. The
other two new design points perform non-temporal bulk zeroing, and concurrent
non-temporal bulk zeroing. Both of these new strategies perform better than de-
ployed strategies. The best policy, however, adaptively chooses among the non-
temporal bulk and concurrent non-temporal bulk based on available hardware par-
allelism.

Section 3.1 discusses hot-path zeroing that minimize indirect costs of zero ini-
tialization by integrating zeroing into the allocation sequence to reduce cache dis-
placement. Section 3.2 describes bulk zeroing, which reduces the direct cost of zero
initialization by zeroing memory in large chunks with temporal store instructions.
Section 3.3 introduces non-temporal bulk zeroing. It zeros memory in large chunks
with non-temporal store instructions to reduce the direct cost by improving memory
throughput and indirect cost by bypassing caches. Section 3.4 introduces concurrent
bulk non-temporal zeroing which offloads zero initialization to idle cores to further
reduce the direct cost. Section 3.5 introduces the best policy, adaptive zeroing, which
chooses among two new designs I proposed.

3.1 Hot-path Zeroing

Hot-path zeroing zeroes memory for each object at allocation time, immediately prior
to its first use. By default IBM J9, Oracle HotSpot, and Azul HotSpot use this design.
Hot-path zeroing trades better data locality against a diminished opportunity to op-
timize zeroing. It requires more instructions on the allocation hot-path and therefore
degrades the program’s instruction locality.

Hot-path allocation is performance critical in a modern JVM. To avoid the over-
head of function calls and to enlarge the optimization scope, compilers usually inline
hot-path allocation. Zeroing in the hot-path increases the size and complexity of
generated code, which leads to more instruction cache pressure. On the other hand,
hot-path allocation is friendly to modern memory systems since it provides good
temporal locality with the use of the data. Modern processors aggressively prefetch
the memory for sequential reference streams to hide latency. Hot-path allocation

11
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does provide a sequential access pattern, but since allocation is interspersed with
other data accesses, spatial locality is reduced and thus hot-path allocation is less
amenable to hardware prefetching compared to bulk zeroing.

Our hot-path implementation inserts instructions to initialize objects just prior
to their creation. It zeroes objects sixteen bytes at time using an unrolled loop of
four-byte mov instructions. We found that this version performed significantly better
than two eight-byte (movq) instructions or one sixteen byte (movdq) instruction. We
concluded that this was for two reasons: 1) The larger width instructions required
the use of a register as the source, while the four byte instruction could use a zero
immediate; and 2) only four-byte alignment is guaranteed in the allocation sequence,
while the wider instructions are known to require aligned memory access for optimal
performance. When objects are smaller than sixteen bytes, our approach will redun-
dantly zero some trailing memory. Since the minimum object size is 8 bytes (the size
of a header) and the average object size is around 28 bytes, redundant-zeroing is not
a significant concern. Section 5.2 evaluates the performance overhead of hot-path
zeroing.

Opportunity for further optimization. Java’s semantics require that a constructor
be executed immediately after each object is allocated. A constructor includes arbi-
trary user code and may include the explicit initialization of all or part of the object,
resulting in a duplication of effort. If the implicit zeroing and explicit initialization
are both statically visible to an optimizing compiler, the compiler can remove redun-
dant hot-path zeroing. The opportunities for performance improvement are modest
because hardware will efficiently handle redundant writes with such good temporal
locality. Such an optimization is also difficult to make correct in general, because
it requires an analysis to guarantee that all object fields are initialized before they
are seen by the program or the garbage collector, otherwise, the constructor could
publish uninitialized objects or trigger the garbage collection which could collect live
objects. The Oracle HotSpot VM implements such an optimization, but when we
measured it, we found that it provides no benefit except for two older benchmarks
(jess and pjbb2005) and only when they are running on old hardware. Due to this
negative result, and the complexity involved in implementing the optimization, we
do not consider it further.

3.2 Bulk Zeroing

Both Jikes RVM (by default) and HotSpot (with a command line option) provide bulk
zeroing. Bulk zeroing initializes blocks of free memory to zero prior to returning
them to the memory allocator. The default implementation in Jikes RVM performs
zero initialization of 32KB blocks using glibc’s memset() function. Because the size
of the block (in this case 32KB) is much smaller than the size of the last level cache
on the machines we evaluated, the memset() function uses normal store instructions
to perform zeroing. The rationale for bulk zeroing design is improving the efficiency
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of zeroing. It performs highly optimized zeroing in a tight loop with a very small in-
struction cache footprint. For example, the zeroing routine straightforwardly utilizes
instructions that zero at a coarse grain—zeroing a double word, quad word, or even
a cache line at a time. Because of the high spatial locality of these instructions, hard-
ware prefetching further reduces the latency of zeroing. The disadvantage of this
design is that as the block size grows, the average reuse distance between allocation
and data use also grows. Section 5.3 evaluates bulk zeroing.

3.3 Non-temporal bulk Zeroing

This section and the next present our new designs. Non-temporal instructions (also
known as streaming instructions) provide a key addition to the ISA that locality-
aware applications can use to override the default cache policies. Non-temporal
instructions bypass the cache altogether with a weaker memory order. This control
is particularly advantageous when an application stream writes to memory — an
access pattern which would otherwise have the effect of systematically displacing
the potentially useful contents of the cache. A non-temporal store eliminates fetches
associated with a regular store and does not displace cache lines at any level of the
hierarchy.

Non-temporal instructions also have some downsides as we discussed in Sec-
tion 2.3. On the upside, these restrictions bring further benefits when non-temporal
instructions are used correctly because they improve write bandwidth by a factor of
two or more since no fetches are required and stores have week memory order.

Figure 3.1(a) shows the potential throughput benefits of non-temporal instruc-
tions, when used correctly on the three architectures used for our evaluation (see Sec-
tion 4.2 for the architectural details). This simple limit study evaluates the through-
put performance of non-temporal and caching write instructions in a tight zeroing
loop with one thread and N threads, where N is the number of available hardware
contexts (hardware threads). On the Phenom II, the throughput increase of non-
temporal instructions is only 15% for a single core, and 64% when using all cores.
Both the Core2 Quad and i7-2600 hardware perform non-temporal write instructions
at twice the rate as caching write instructions.

Figure 3.1(b) shows the memory bandwidth scalability of non-temporal instruc-
tions in the same tight loop with respect to the number of hardware threads. The
memory bandwidth on the Core2 Quad does not scale with the number of threads.
The memory bandwidth on the i7-2600 scales by 18% with 2 threads, and a little more
to 20% with 5. 5 parallel threads performing non-temporal stores thus achieving a
20% higher store rate than a single thread.

Non-temporal instructions therefore provide an excellent opportunity to mitigate
the poor locality of the bulk-zeroing design point. Our non-temporal bulk-zero im-
plementation replaces memset() — which uses regular store instructions for regions
smaller than the last-level cache size — with a loop that uses the movntdq quad-word
non-temporal store instruction. Note that unlike hot-path zeroing, for bulk zeroing
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we can guarantee aligned memory accesses and amortize the cost of zeroing the
source register, avoiding the pitfalls that made wide instructions perform poorly in
that case. Section 5.4 assesses the performance of this modest change and shows it
has a significant performance impact.

3.4 Concurrent Zeroing

Non-temporal bulk zeroing mitigates the direct and indirect costs of zeroing. Nonethe-
less, the zeroing remains on the application’s critical path, and as we show in Sec-
tion 5.4, even with these optimizations, the direct cost of non-temporal bulk zero-
ing still adds around 5% on average to total execution time. Hardware parallelism
creates the opportunity to perform zeroing concurrently, moving this overhead off
the application’s critical path. The mechanics of concurrent zeroing require some
synchronization between the zeroing thread and the application threads consuming
zeroed memory. The primary challenge for this design point is ensuring that this
synchronization does not dominate performance.

We utilize a single initializing thread that zeroes memory. The JVM wakes up this
thread up at the end of each nursery garbage collection, and it zeroes all blocks freed
by the nursery collection. We use non-temporal instructions here as well, for the
same reasons we described above. The initializing thread maintains a synchronized
global cursor that consumer threads monitor to determine the progress of zeroing.
The application’s allocation slow path acquires memory from a global pool one block
at a time as usual. However, it no longer zeros the newly acquired block, but instead
busy-waits on the global zero cursor until the initialing thread has zeroed the block
it will consume. Because the zeroing thread is typically well ahead of the application
threads, the allocating consumer threads rarely wait.

Alternative design options. A natural extension of this design is to use multiple,
parallel zeroing threads to further utilize parallel hardware and to improve the zero-
ing throughput. This design is particularly appealing when the application is mul-
tithreaded and allocates at a sufficiently high rate that outpaces the zeroing thread.
The DaCapo benchmark lusearch is an example of such an application. However,
this design requires coordination among the zeroing threads. There are two classic
alternatives. First, the space can be statically partitioned, with each thread zeroing
pre-determined blocks. This design requires no synchronization among the zeroing
threads, but complicates the implementation of the global cursor that the application
threads must check. Worse yet is that the throughput will be bounded by the slowest
thread, which is problematic when a thread goes to sleep or is otherwise disrupted.
The second alternative is for threads to race to zero blocks without a pre-determined
order, which requires synchronization among the zeroing threads. This approach
remains susceptible to one of the zeroing threads being interrupted whilst zeroing
a block. Since application progress may be blocked whenever any thread is inter-
rupted, parallel zeroing is more susceptible to slow allocation than single-threaded
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concurrent zeroing because there are more opportunities for threads to be blocked.
We evaluated this design and found it to be substantially less effective than single-
threaded concurrent zeroing, so we do not consider it further.

Scheduling priorities. One pitfall of concurrent zeroing is that the zeroing thread
may be preempted by the application, particularly since we use a busy-wait loop
for the application threads. To prevent the application from being starved of zeroed
memory, we experimented with adjusting the operating system scheduler priority
for the zeroing thread. We found that the most effective design was to give the
initializing thread a real-time priority, which requires root privileges under linux.
Although this alternative does improve performance by 1% on average, the gain is
never substantial, and because it requires root privileges, we do not consider this
design further.

3.5 Adaptive Zeroing

The lack of an effective design for parallel zeroing threads means that high allocation
rate multi-threaded workloads, such as lusearch, overwhelm concurrent zeroing and
incur high overheads (see Section 5.5). Because of this problem, we develop a simple
adaptive strategy for use on hardware with good memory scalability, which con-
ditionally uses either non-temporal bulk zeroing or concurrent non-temporal bulk
zeroing. Our strategy simply checks at the end of each nursery collection whether
the number of active application threads is less than the number of available hard-
ware contexts. If there is a surplus of hardware contexts that the application is
not using, the allocator uses concurrent non-temporal bulk zeroing until the next
garbage collection. If the application is using all the hardware contexts, the allocator
uses non-temporal bulk zeroing. We see in Section 5.6 that adaptive zeroing is the
most effective technique for reducing the overhead of zero initialization across all
benchmarks.

3.6 Summary

This Chapter introduced the design and implementation of four different zeroing ini-
tialization designs. Each of them makes a different trade-off between the throughput
of zero initialization and temporal locality. The next chapter describes the methodol-
ogy I will use to evaluate these designs on mainstream x86 CMPs in Chapter 5.



Chapter 4

Experimental Methodology

This chapter describes the experimental environment used in the remainder of the
thesis. Section 4.1 explains the benchmarks, virtual machines, and operating systems
used . Section 4.2 describes the machines on which we evaluate designs.

4.1 Software platform

Benchmarks We use 20 benchmarks drawn from the DaCapo [Blackburn et al.,
2006] and SPECjvm98 [SPEC corporation, 1999] suites, and a modified version of
SPECjbb2005 [SPEC corporation, 2005], pjbb2005, modified to run a fixed workload
(8 warehouses with 10,0000 transactions per warehouse) rather than for a fixed du-
ration. Table 4.1 lists key characteristics of each benchmark. Of the 20 benchmarks,
pjbb2005, hsqldb, lusearch, xalan, avrora, and sun�ow are multi-threaded benchmarks.
We use the set of benchmarks from both the 2006-10-MR2 and 9.12 Bach releases of
the DaCapo suite, excluding a small number of 9.12 benchmarks that we could not
run on Jikes RVM and those 2006-10-MR2 benchmarks that are directly superseded
in 9.12.

Java Virtual Machine We explore the performance of zeroing using OpenJDK 1.6.0
Oracle HotSpot Server JVM and the Jikes RVM 3.1.1 release [Alpern et al., 2005]. We
perform most experiments and implement all the approaches in Jikes RVM, a highly
tuned research-oriented VM. We show that the cost of the two traditional zeroing
approaches in HotSpot have similar overheads and show the same trends as in Jikes
RVM to demonstrate that these results have broad applicability.

In Jikes RVM, we use the default production generational Immix garbage collec-
tor [Blackburn and McKinley, 2008].

We use a 32MB fixed size nursery divided into 32KB blocks. We execute with a
generous heap size: 6× the minimum required for each individual benchmark, as
reported in the Heap column of Table 4.1. For each invocation of each benchmark,
we run four warm-up iterations and then measure the fifth iteration. We run each
benchmark 20 times (20 invocations) and report the average. The Total Allocation

column of Table 4.1 shows the average volume of nursery objects allocated over 20
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Total Allocation
Heap Allocation Rate Multi-

Benchmark Suite MB MB GB/s threaded

antlr DaCapo MR2 144 269 0.31 No
bloat DaCapo MR2 198 1218 0.42 No
eclipse DaCapo MR2 480 2889 0.20 No
fop DaCapo MR2 240 78 0.09 No
hsqldb DaCapo MR2 762 130 0.14 Yes
avrora DaCapo Bach 300 73 0.02 Yes
jython DaCapo Bach 240 1476 0.50 No
luindex DaCapo Bach 132 54 0.08 No
lusearch DaCapo Bach 204 8170 5.02 Yes
pmd DaCapo Bach 294 435 0.47 No
sun�ow DaCapo Bach 324 1878 0.87 Yes
xalan DaCapo Bach 324 1157 1.11 Yes
compress SPECjvm98 114 105 0.05 No
db SPECjvm98 114 53 0.04 No
jack SPECjvm98 102 241 0.39 No
javac SPECjvm98 198 218 0.22 No
jess SPECjvm98 114 266 0.65 No
mpegaudio SPECjvm98 78 7 0.01 No
mtrt SPECjvm98 120 143 0.42 No
pjbb2005 SPECjbb2005 1200 2045 0.55 Yes

Table 4.1: Benchmark characteristics

invocations under the default bulk zeroing strategy. The Allocation Rate column
shows the allocation rate of benchmarks on the i7-2600 in terms of execution time.

Operating System We use the Ubuntu 10.04.01 LTS server distribution running
with a 64-bit (x86_64) 2.6.32-24 Linux kernel. To maximize performance for multi-
threaded benchmarks, we turn off the SD_WAKE_AFFINE flag and turn on the
SD_WAKE_IDLE flag to wake tasks up on idle CPUs—rather than the CPU on which
they slept—to improve load balancing.

4.2 Hardware platform

We use three hardware platforms to explore the performance of zeroing on real hard-
ware with different technologies, memory systems, and memory bandwidth provi-
sioning. We choose three modern x86 processors to explore recent trends on contem-
porary hardware. We choose (1) the Core2 Quad which has a classic front-side bus,
which eases memory system analysis, (2) the most recent Intel processor (i7-2600) we
could buy, and (3) the recent six core AMD Phenom II.

Core2 Quad Q6600 We use a 65nm 2.4GHz Intel Core2 Quad Q6600 that includes
two dies in a single package. On each die, there are two cores running at 2.4GHz, a
32KB L1 instruction cache and 32KB L1 data cache for each core, and a shared 4MB
L2 inclusive cache (making a total of 8MB L2 across the two dies). The motherboard
uses the G965 chip-set, which has a dual-channel memory controller. It has 2GB of
DDR2-800 memory installed.
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The characteristics of the Core2 Quad processor eases a detailed analysis of mem-
ory traffic. The two dies are connected by a 1066MHz front side bus (FSB). For normal
memory references, the FSB transfers data between caches and memory in cache-line
sized units (64 bytes), which means that we can measure the size of data transferred
across the FSB by counting the number of full cache-line (burst) transactions. Two
types of memory references generate fetch transactions to retrieve data from mem-
ory to cache: program cache misses and prefetching misses that are generated by
the hardware automatic prefetching unit. We use performance counters to count
the number of last level program cache misses, and the number of last level cache
prefetching misses to help to understand the memory traffic on the bus.

i7-2600 We use a 32nm Core i7-2600 Sandy Bridge with 4 cores and 2-way SMT run-
ning at 3.4GHz. The two hardware threads on each core share a 32KB L1 instruction
cache, 32KB L1 data cache, and 256KB L2 cache. All four cores share a single 8MB
last level cache. A dual-channel memory controller is integrated into the CPU. It has
4GB of DDR3-1066 memory installed.

Phenom II X6 1055T We use a 45nm AMD Phenom II X6 1055T which has 6 cores
and runs at 2.8GHz. Each core has a private 64KB L1 instruction cache, 64KB L1
data cache, and 512KB L2 cache. The six cores share a single 6MB L3 cache. A dual-
channel memory controller is integrated into the CPU. 4GB of DDR3-2000 memory
is installed.
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Chapter 5

Results

This chapter quantitatively evaluates the cost of zero initialization, including the four
individual design points outlined in Chapter 3 and the adaptive policy which selects
between the two best designs. I start by showing the direct cost of zero initialization
in Section 5.1. I then quantitatively explore the performance and tradeoffs made by
hot-path zeroing and bulk zeroing in Section 5.2 and Section 5.3. I finish by exploring
the new design points and the combined adaptive system in Section 5.4, Section 5.5,
and Section 5.6.

5.1 Direct Cost of Zeroing Initialization

This section evaluates the direct costs of zeroing. Because bulk zeroing occurs at a
coarse grain, it is easier to analyze than hot-path zeroing, where zeroing instructions
are enmeshed at a fine grain within the allocation sequence. For the same reason, we
use bulk zeroing as our baseline for comparison throughout the rest of the thesis un-
less otherwise mentioned. Here we use performance counters to report the number
of cycles spent performing bulk zeroing.

The direct cost of zero initialization is the CPU time spent performing zero ini-
tialization computed as a fraction of the total CPU user time (User Time) and system
time (System Time). System Time includes CPU cycles used by the OS on behalf of the
process.

DirectZeroingCost =
ZeroingCycles

UserTime + SystemTime

Note that this metric does not include the indirect costs such as reduced application
locality due to cache displacement.

Figure 5.1(a) shows the results for all three architectures. On the i7-2600, zeroing
consumes an average of 3.8% of total time, with almost a 30% overhead for lusearch!
Just under half of the benchmarks spend 5% or more of their CPU cycles performing
zero initialization. On the Phenom II, whose memory bandwidth is between Core2
Quad and i7-2600, the average direct cost is between those two architectures, 5%. On
the Core2 Quad, which represents more memory bandwidth constrained platforms,

21
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Figure 5.1: The cost of zero initialization
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the cost of zero initialization increases to 6.4% on average, and up to as much as 50%
on lusearch. More than half of the benchmarks spend more than 5% of all CPU cycles
on zero initialization. We found the high direct cost of zeroing surprising.

Figure 5.1(b) shows the overall importance of zeroing by benchmark in terms
of the amount of zero initialized memory as a fraction of the amount of memory
transferred by burst bus transactions. This fraction ranges from 10 to 45% for most
benchmarks. Only for avrora and db does zeroing account for negligible traffic, and
as we will see, these benchmarks unsurprisingly show no sensitivity to the choice of
zeroing strategy. The trend towards high allocation rates in managed languages such
as Java, C#, PHP, and JavaScript, suggests that these low allocation rate programs
may be outliers.

Lusearch incurs the highest direct cost of zero initialization among the bench-
marks we used. This is because the multithreaded lusearch benchmark allocates at
more than nine times the average rate and four times the rate of the next highest
benchmark, as shown in Table 4.1. Although lusearch is an outlier among our bench-
marks, it is important to note that it is a realistic benchmark based on Apache Lucene
which is highly tuned and very widely deployed.

5.2 Hot-path Zeroing

This section evaluates hot-path zeroing, which is the most widely used strategy. Hot-
path zeroing trades decreased zeroing performance for greater temporal locality due
to a short reuse distance between storing zero and the first time the program touches
the objects allocated on each cache line. We start by comparing overall performance
against bulk zeroing, reporting results for all three microarchitectures.

Overall performance. Figure 5.2(a) shows the relative performance of hot path ze-
roing compared to bulk zeroing on all three architectures. These results show that
hot-path zeroing offers a small advantage over bulk zeroing, but that advantage is
steadily shrinking as we move to newer technology. Compared with bulk zeroing,
hot-path zeroing performs on average 2.2% faster on the low-bandwidth Core2 Quad.
On the higher bandwidth Phenom II and i7-2600, the advantage of hot-path zeroing
is halved to just 1.0% and 0.8% respectively. Four benchmarks benefit a lot from hot-
path zeroing: antlr, jack, jess, and lusearch. Table 4.1 shows that these correspond to
several of the more highly allocating benchmarks. However, most benchmarks are
neutral to this choice, including eclipse and jython, which are highly allocating as
well.

We confirmed that these results hold on the HotSpot JVM. We added our op-
timized bulk zeroing to HotSpot and found similar results to those reported here
for Jikes RVM, with hot-path zeroing providing a negligible advantage on modern
machines (2.7% and just 0.1% speedup on the Core2 Quad and i7-2600 respectively).
The remainder of this section explores hot-path zeroing in greater detail. We use the
Core2 Quad for this analysis because it uses a front side bus which allows us to mea-
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sure memory traffic via hardware performance counters. The two newer machines
have integrated memory controllers and do not expose such detailed memory traffic
information via performance counters.

Although hot-path and bulk zeroing perform similarly on average, in Section 5.3
we show that they achieve this performance by making very different tradeoffs.

Instruction footprint. As mentioned in Section 3.1, the compiler often inlines the
allocation sequence to improve performance. The compiler thus sprinkles additional
hot-path zeroing instructions all over the program, generating a lot of instructions
compared to a single out-of-line loop for bulk zeroing. As shown in Figure 5.2(b),
this increase degrades instruction locality, increasing the number of instruction cache
misses by 1.3% for hot-path zeroing compared to bulk zeroing. For several bench-
marks (antlr, db, javac and jython), the instruction cache misses increase by more than
5%. This overhead is often significant. For example, the decrease in program cache
misses in jython of 70% suggests the potential for a performance win, however, poor
instruction cache locality counteracts this potential resulting in a net performance
degradation.

Data locality. We divide cache misses into those generated directly by the program
(program cache misses), those generated by automatic hardware prefetching of mem-
ory (prefetching cache misses), and sum their total. Figure 5.2(b) shows that hot-path
zeroing reduces total last-level cache misses by 6% on average on the Core2 Quad
compared to bulk zeroing. Although the graph shows a large reduction in program
misses, this is a little misleading because the reduction is mostly offset by an in-
crease in prefetch misses. This is explained because hot-path zeroing zeros more
slowly, providing more opportunity for memory requests to be satisfied by hardware
prefetches. The penalty of slower zeroing throughput for hot-path zeroing counter-
acts its improved temporal locality. In a few cases, hot-path zeroing reduces more
than 70% of the last-level program cache misses, e.g., bloat, jack, jess, and lusearch,
which leads to 4.6%, 4.8%, 8% and 24% speedups respectively.

Compared with hot-path zeroing, bulk zeroing zeros larger continuous chunks
sequentially in a tight loop, and consequently places higher demands on the bus,
leading to less aggressive automatic prefetching, but more program misses. On the
other hand, hot-path zeroing intertwines zeroing instructions with the allocation se-
quence and its surrounding context, and thus spreads the stores out, placing less
pressure on the bus, as shown in Figure 5.3(a). Compared with the default bulk
zeroing, hot-path zeroing results in more prefetch requests. Because the program
does not uses the zeroed lines quickly, these results show that prefetching is not very
effective at reducing the latency of the misses.

Memory performance. Figure 5.3(a) compares burst bus transactions, using perfor-
mance counters to quantify the number and type of transactions. Burst transactions
correspond to full cache line transfers, which form the vast majority of bus activity
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Figure 5.4: Zeroing performance: Bulk zeroing

for our workloads (the number of partial bus transactions is near zero). For each
benchmark, the left bar shows bulk zeroing while the right bar shows hot-path ze-
roing. Each bar is broken down into write, program cache misses, and prefetching cache
misses normalized to bulk zeroing. The first bar in each pair thus sums to 1.0, while
the height of the second bar shows that hot-path path zeroing reduces total bus
transactions by reducing program cache misses. Figure 5.3(b) normalizes each metric
to the corresponding metric for bulk zeroing. Figure 5.3(b) shows that on average
hot-path zeroing reduces burst transactions by only 5.2% on average, despite reduc-
ing last level program cache misses by 45% because it increases transactions caused
by prefetching cache misses by 27%.

5.3 Bulk Zeroing

This section explores the behavior of bulk zeroing across two dimensions: a) raw
performance, and b) the relationship between a benchmark’s CPU utilization and its
zeroing performance.

Zeroing performance. On modern CPUs, zeroing performance is primarily deter-
mined by two factors: the cache hit-rate, and the degree of contention on the shared
memory subsystems. We measure the average number of cycles taken to zero a block
of memory for each benchmark, and express the result in GB/sec.
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ZeroingPer f ormance =
BytesZeroed

ZeroingCycles

Figure 5.4 shows the zeroing performance in the context of each benchmark. Note
that the figure does not present the total memory zeroed by a benchmark divided by
its execution time. The Core2 Quad, Phenom II, and i7-2600 bulk zero at around 3,
5, and 8 GB/sec respectively. Figure 5.4 shows that the zeroing performance is quite
uniform among these benchmarks. The notable exception is lusearch, which zeroes at
the lowest rate and uses the highest percentage of CPU cycles zeroing, as we explain
next.

CPU utilization. CPU utilization provides an indication of the degree of contention
to shared memory subsystems — if all CPUs are fully utilized, pressure on the mem-
ory subsystem is likely to be high. We derive CPU utilization based on user time,
system time, and total execution time.

CPUUtilization =
UserTime + SystemTime

ExecutionTime

Because UserTime and SystemTime are aggregated across threads, CPUUtilization is
bounded by N (N × 100%), where N is the number of available hardware contexts.
For example, the Core2 Quad, Phenom II, and i7-2600 have 4, 6, and 8 hardware
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Figure 5.6: Zeroing performance: non-temporal bulk zeroing

contexts, and thus maximum CPUUtilization is 400%, 600%, and 800% respectively.
Another approach to show CPU utilization is normalizing user time and system by
dividing by the number of cores, which expresses the same information as ours.

Figure 5.5 shows CPU utilization. Four benchmarks — lusearch, pjbb2005, sun-
�ow, and xalan — have relatively high CPU utilization, which suggests that con-
tention to shared memory subsystems is high when they are executing. High CPU
utilization depresses the average zeroing performance of pjbb2005, sun�ow, and xalan

somewhat, but less significantly than lusearch. The zeroing performance of lusearch is
the worst because it has the highest allocation rate, high CPU utilization, and incurs
significant contention. Sun�ow and xalan have lower zeroing performance, especially
on i7-2600, in part due to higher contention on shared memory subsystems.

Tradeoffs and trends. Together the bulk and hot-path zeroing results show that the
two designs impose a significant overhead and that there is a tradeoff between the
direct and indirect costs of zeroing. While hot-path zeroing has better data cache
hit rates, it degrades code quality and does not hide memory latencies well. On the
other hand, the performance of bulk zeroing is a function of memory bandwidth.
Modern machines have increased bandwidth to a point where bulk zeroing essen-
tially matches hot-path performance. However as future CMPs increase hardware
parallelism, that bandwidth will be increasingly contended for. In summary, we see
a stark tension between: a) bulk zeroing which has low direct costs but suffers signif-
icant cache pollution, and b) hot-path allocation which reduces data cache pollution,
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but imposes a significant direct cost on the program. The next three sections show
how we break this tradeoff and produce a system that performs better than either of
the prior approaches.

5.4 Non-temporal Bulk Zeroing

This section evaluates non-temporal bulk zeroing. The non-temporal writes of zeroes
bypass the cache hierarchy and thus reduce the direct cost of bulk zeroing and cache
pollution. Such a design should offer the benefits of bulk zeroing whilst minimizing
its drawbacks.

Zeroing performance. Figure 5.6 shows zeroing performance (not overall perfor-
mance) for non-temporal bulk zeroing, normalized to bulk zeroing. We use the same
metric and methodology as in Figure 5.4: how fast, on average, does the system zero
a 32KB block in the setting of a given benchmark? Remember that Section 3.3 showed
non-temporal instructions have much higher bandwidth than temporal instructions,
so we expect an improvement. On the Core2 Quad, Phenom II, and i7-2600, zero-
ing performance for non-temporal bulk zeroing improves by 35%, 7%, and 71% on
average. Overall, non-temporal instructions significantly improve the average rate at
which these benchmarks zero a 32KB block on Core2 Quad and i7-2600.

Overall performance. Figure 5.7(a) shows the effect of non-temporal bulk zeroing
on overall performance on all three architectures, normalized to bulk zeroing. On the
Core2 Quad, non-temporal bulk zeroing improves execution time by 2.7% on average
and by as much as 27% for lusearch. These improvements reflect reductions in the
last-level program cache misses shown in Figure 5.7(b) of 43% on average and up to
92% for lusearch. Execution times on the Phenom II and i7-2600, also improve, but
by less. The benefits of non-temporal zeroing come from reducing the direct cost and
the indirect cost by avoiding cache pollution. For example, on the Core2 Quad, bloat
spends 5% of CPU cycles zeroing memory. Non-temporal instructions improve the
zeroing performance on bloat by 50%, suggesting that at best bloat’s execution time
could be reduced by (1 − 1/1.5)× 5% = 1.7% with non-temporal zeroing. However,
in practice the overhead is reduced by 4.4%, almost entirely eliminating any overhead
due to zeroing! This result indicates that the indirect benefit due to hugely reduced
cache pollution is substantial. Similar results hold for benchmarks such as lusearch

and jess.

Memory performance. Although non-temporal zeroing reduces cache displacement,
it increases the number of bus transactions. Because non-temporal zeroing explicitly
invalidates all resident cache lines that it writes to, each zero is always accompanied
by a subsequent memory read so long as that line is eventually used. By contrast,
regular bulk zeroing will leave the zeroed line in cache, attaining cheap cache line
reuse if the program reuses it promptly.
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Figure 5.7: Overall performance: Non-temporal bulk zeroing
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Direct cost of Concurrent zeroing
Benchmark zeroing % improvement %

antlr 5.0 4.6
bloat 6.8 8.3
jack 7.3 6.3
jess 12.0 14.0
jython 9.6 5.7
mtrt 6.0 6.8

Table 5.1: Zeroing cost and concurrent zeroing improvements for high cost, low CPU
utilization benchmarks on the Core2 Quad.

Figure 5.8(a) shows the number of burst bus transactions, broken down in the
same way as in Section 5.2. In Figure 5.8(a), write transactions increase, except for db
and avrora. They increase because unlike the temporal zero instruction which gener-
ates a fetch, the non-temporal zeroing instruction generates a write and invalidates
the resident cache line, then the program later references the line, instantiating it in
the cache. The program typically writes to the newly allocated object, which dirties
the cache line, and thus requires another write.

Figure 5.8(b) shows each type of bus transactions normalized to default bulk ze-
roing. On average, burst transactions are increased by 13%. For benchmarks with
higher zeroing cost (jython, jess, and jack), burst bus transactions are increased by
40%. As with hot-path zeroing, the burst transactions for db and avrora are unaf-
fected by non-temporal zeroing.

Figure 5.8(b) shows that non-temporal bulk zeroing reduces fetches by 15% on
average and up to 86% for lusearch. However, the fetches due to prefetching cache
misses increase by 20% on average, and by as much as 80% or more for jess, jython
and sun�ow. Because non-temporal zeroing explicitly evicts each line from the cache,
the first touch to an allocated object forces the processor to fetch it into the cache.
Sequentially touching new objects appears to activate the processor’s prefetching
logic resulting in a larger number of prefetch requests being issued. However, this
20% increase in prefetching cache misses is lower than the 27% average increase seen
by hot-path zeroing.

5.5 Concurrent Zeroing

Although non-temporal bulk zeroing improves zeroing performance, the benchmarks
still spend on average 2 to 4.6% and as much as 26% of total time performing zero
initialization on the Core2 Quad. This section evaluates the concurrent zero initializa-
tion design that exploits hardware parallelism to hide the cost of zero initialization.
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Figure 5.9: Zeroing performance: Non-temporal v concurrent on the i7-2600

Zeroing performance. Figure 5.9 compares non-temporal bulk zeroing to concur-
rent non-temporal bulk zeroing. These results are normalized to default bulk zeroing,
and higher is better. For low CPU utilization benchmarks, the zeroing performance
of a single concurrent thread is slightly worse than non-temporal bulk zeroing. Inter-
estingly, this poor zeroing performance is due to good locality. When the application
has low CPU utilization, the zeroing thread will execute unfettered, rapidly zeroing
the nursery soon after the completion of the prior garbage collection. By contrast,
bulk zeroing uses a large number of 32KB blocks interspersed with application activ-
ity, which displaces the cache. Concurrent zeroing for low CPU utilization threads
therefore achieves good temporal and spatial locality. Perversely, this good locality
leads to lower memory bandwidth since the data is typically in cache and must there-
fore be invalidated as it is written. Because these low CPU utilization benchmarks
do not exhibit high allocation rates and there are underutilized cores, concurrent
zeroing hides the cost of zeroing very well, even though zeroing performance is rel-
atively low on these benchmarks (as shown in Figure 5.10). In Table 5.1, we single
out the low CPU utilization benchmarks whose zeroing cost is higher than 5% and
show their speedup on the Core2 Quad. Speedup is gained both from hiding zeroing
latency and from improved temporal locality.

Overall performance. Figure 5.11 shows the performance of concurrent non tem-
poral bulk zeroing normalized to hot-path zeroing. Concurrent zeroing improves
performance over hot-path zeroing by 2.1% on average and up to 8.2% on Core2
Quad. Remember that hot-path zeroing and bulk zeroing perform about the same
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Figure 5.10: Overall performance: non-temporal bulk, concurrent non-temporal bulk,
and adaptive zeroing relative to bulk zeroing on the i7-2600.

on the Phenom II and i7-2600, and therefore concurrent zeroing is the best design
so far. Concurrent zeroing results in about 2.6% speedup on average and up to 19%
on lusearch on the i7-2600 compared to hot-path zeroing. However, on the Phenom
II, because the throughput of the zeroing thread is too low, concurrent zeroing only
improves average performance 1.2%.

Concurrent zeroing however is not effective on xalan, sun�ow, pjbb2005, lusearch,
and avrora, especially on the i7-2600. In these highly multithreaded and high CPU
utilization applications, the concurrent zeroing thread interferes with the application
threads. Another problem is that a single zeroing thread is insufficient to provide al-
location intensive benchmarks, such as lusearch, with zeroed blocks quickly enough.
For example, we found that lusearch performs busy waits for a zeroed block 510
times on the i7-2600 and 15540 times on the Core2 Quad. However, the benchmarks
that do not benefit from concurrent non-temporal zeroing, do well with straight non-
temporal zeroing, which motivates our adaptive design.

5.6 Adaptive Zeroing

Adaptive zeroing adaptively chooses between non-temporal bulk zeroing and con-
current non-temporal bulk zeroing. At the end of each garbage collection, the system
checks the number of active threads and then chooses between the two policies. This
design tries to pick the best zeroing initialization choice for each benchmark. It
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Figure 5.11: Overall performance relative to hot path zeroing: Execution time for non-
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chooses concurrent zeroing only when the number of threads is less than or equal
to the number of hardware contexts after each garbage collection. For most bench-
marks, Figure 5.11 shows that adaptive zeroing selects the optimal zeroing approach.
The performance of adaptive zeroing is typically the best and if not it lies between
the two new strategies and is always closest to the better zeroing approach.

Overall performance. Finally, we show overall performance of each design, com-
pared to the widely used hot-path design. Adaptive zeroing improves performance
by 2.2% on average and up to 7% on the Core2 Quad, 0.8% on average and up to 4.1%
on the Phenom II, and 2.7% on average and up to 15% for lusearch on the i7-2600.

5.7 Summary

In this chapter, I evaluated four zero initialization designs and adaptive policy on
three mainstream x86 CMPs. These results showed that zeroing overheads are sur-
prisingly expensive and existing designs either addressed the direct zeroing cost or
the indirect cost. Two new designs I proposed reduced both direct and indirect costs
simultaneously by using non-temporal store instructions. By taking advantage of
these two new designs, an adaptive zeroing approach that switches among them was
described and shown to achieve the best performance.
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Chapter 6

Conclusion

This thesis shows that zero initialization incurs a significant overhead on modern
processors and provides the first detailed analysis of those overheads. I quantita-
tively analyze the direct and indirect overheads of existing zero initialization designs
on mainstream CMPs, and propose new designs. Unlike prior designs, these new
designs exploit both the concurrency and non-temporal cache-bypassing instructions
of modern architectures. I also propose a simple adaptive policy that dynamically
chooses between the two new designs. The result is a substantial reduction in the
overhead due to zero initialization, which leads to an average improvement of 2.7%
over the best-performing prior technique, hot-path zeroing, across a wide range of
benchmarks on the i7-2600.

The results highlight the importance of counter-intuitively sacrificing temporal
locality to achieve high memory throughput and minimize cache pollution. I also
point in the direction of other optimizations that could further lower the overhead of
providing memory safety. These results also show an advantage of automatic mem-
ory management—the opportunity to understand the memory usage of applications
accurately and dynamically adapt policies.

In the multicore era, the performance of the system depends more than ever
on how the software system and hardware system cooperatively work together to
improve the utilization of resources that multicore processors provide. The key to
the best designs presented in this thesis lies in exploiting a detailed understanding
of both hardware and software architectures. This is a very promising model for
future research on the performance of managed languages on modern architectures.

6.1 Future Work

The best zero initialization policy, adaptive zeroing, chooses among new designs
based on a simple heuristic which would not be reliable in a highly loaded sys-
tem. Making optimal decisions requires understanding resource usage across the
whole system. One approach for future work is to make the operating system sched-
uler more JVM aware. In the concurrent zeroing design, zeroed memory consumer
threads monitor zero initialization progress by busy-waiting on the global zero cur-
sor. In the future, we could investigate approaches to avoid overheads of busy-

39
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waiting, such as using synchronization (lock or mutex) services provided by operat-
ing system and allowing consumer threads to steal zero initialization work instead of
waiting for zeroing thread. Also, bulk zeroing has the potential to take both advan-
tages of non-temporal and temporal stores by mixing them to achieve good temporal
locality and high memory throughput. In this thesis, we only evaluated zero ini-
tialization designs on single socket CMPs. In the future, we could investigate the
ccNUMA effect, especially on modern interconnect network connected small scale
(2-4 sockets) machines.
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