
TURING AWARD LECTURE

Reflections on Software
Research
Can the circumstances that existed in Bell Labs that nurtured the UNIX
project be produced again?

DENNIS M. RITCHIE

The UNIX 1 operating system has suddenly become
news, but it is not new. It began in 1969 when Ken
Thompson discovered a little-used PDP-7 computer and
set out to fashion a computing environment that he
liked. His work soon attracted me; I joined in the enter-
prise, though most of the ideas, and most of the work
for that matter, were his. Before long, others from our
group in the research area of AT&T Bell Laboratories
were using the system; Joe Ossanna, Doug McIlroy, and
Bob Morris were especially enthusiastic critics and con-
tributors. In 1971, we acquired a PDP-11, and by the
end of that year we were supporting our first real users:
three typists entering patent applications. In 1973, the
system was rewritten in the C language, and in that
year, too, it was first described publicly at the Operat-
ing Systems Principles conference; the resulting paper
[8] appeared in Communications of the AC M the next
year.

Thereafter, its use grew steadily, both inside and out-
side of Bell Laboratories. A development group was es-
tablished to support projects inside the company, and
several research versions were licensed for outside use.

The last research distribution was the seventh edi-
tion system, which appeared in 1979; more recently,
AT&T began to market System III, and now offers Sys-
tem V, both products of the development group. All
research versions were "as is," unsupported software;

1 UNIX is a trademark of AT&T Bell Laboratories.

© 1984 ACM 0001-0782/84/0800-0758 75¢

Communications of the ACM

System V is a supported product on several different
hardware lines, most recently including the 3B systems
designed and built by AT&T.

UNIX is in wide use, and is now even spoken of as a
possible industry standard. How did it come to suc-
ceed?

There are, of course, its technical merits. Because the
system and its history have been discussed at some
length in the literature [6, 7, 11], I will not talk about
these qualities except for one; despite its frequent sur-
face inconsistency, so colorfully annotated by Don Nor-
man in his Datamation article [4] and despite its rich-
ness, UNIX is a simple, coherent system that pushes a
few good ideas and models to the limit. It is this aspect
of the system, above all, that endears it to its adherents.

Beyond technical considerations, there were sociolog-
ical forces that contributed to its success. First, it ap-
peared at a time when alternatives to large, centrally
administered computation centers were becoming pos-
sible; the 1970s were the decade of the minicomputer.
Small groups could set up their own computation facili-
ties. Because they were starting afresh, and because
manufacturers' software was, at best, unimaginative
and often horrible, some adventuresome people were
willing to take a chance on a new and intriguing, even
though unsupported, operating system.

Second, UNIX was first available on the PDP-11, one
of the most successful of the new minicomputers that
appeared in the 1970s, and soon its portability brought

758 August 1984 Volume 27 Number 8

Turing Award Lecture

it to many new machines as they appeared. At the time
that UNIX was created, we were pushing hard for a
machine, either a DEC PDP-IO or SDS (later Xerox)
Sigma 7. It is certain, in retrospect, that if we had suc-
ceeded in acquiring such a machine, UNIX might have
been written but would have withered away. Similarly,
UNIX owes much to Multics [5], as I have described
[6, 7] it eclipsed its parent as much because it does not
demand unusual hardware support as because of any
other qualities.

Finally, UNIX enjoyed an unusually long gestation
period. During much of this time (say 1969-1979), the
system was effectively under the control of its designers
and being used by them. It took time to develop all of
the ideas and software, but even though the system was
still being developed people were using it, both inside
Bell Labs, and outside under license. Thus, we man-
aged to keep the central ideas in hand, while accumu-
lating a base of enthusiastic, technically competent
users who contributed ideas and programs in a calm,
communicative, and noncompetitive environment.
Some outside contributions were substantial, for exam-
ple those from the University of California at Berkeley.
Our users were widely, though thinly, distributed
within the company, at universities, and at some com-
mercial and government organizations. The system be-
came important in the intellectual, if not yet commer-
cial, marketplace because of this network of early
users.

What does industrial computer science research con-
sist of?. Some people have the impression that the origi-
nal UNIX work was a bootleg project, a "skunk works."
This is not so. Research workers are supposed to dis-
cover or invent new things, and although in the early
days we subsisted on meager hardware, we always had
management encouragement. At the same time, it was
certainly nothing like a development project. Our in-
tent was to create a pleasant computing environment
for ourselves, and our hope was that others liked it.
The Computing Science Research Center at Bell Labor-
tories to which Thompson and I belong studies three
broad areas: theory; numerical analysis; and systems,
languages, and software. Although work for its own
sake resulting, for example, in a paper in a learned
journal, is not only tolerated but welcomed, there is
strong though wonderfully subtle pressure to think
about problems somehow relevant to our corporation.
This has been so since I joined Bell Labs around 15
years ago, and it should not be surprising; the old Bell
System may have seemed a sheltered monopoly, but
research has always had to pay its way. Indeed, re-
searchers love to find problems to work on; one of the
advantages of doing research in a large company is the
enormous range of the puzzles that turn up. For exam-
ple, theorists may contribute to compiler design, or to
LSI algorithms; numerical analysts study charge and
current distribution in semiconductors; and, of course,
software types like to design systems and write pro-
grams that people use. Thus, computer research at Bell
Labs has always had a considerable commitment to the
world, and does not fear edicts commanding us to be
practical.

For some of us, in fact, a principal frustration has
been the inability to convince others that our research
products can indeed be useful. Someone may invent a
new application, write an illustrative program, and put
it to use in our own lab. Many such demonstrations
require further development and continuing support in
order for the company to make best use of them. In the
past, this use would have been exclusively inside the
Bell System; more recently, there is the possibility of
developing a product for direct sale.

For example, some years ago Mike Lesk developed an
automated directory-assistance system [3]. The program
had an online Bell Labs phone book, and was con-
nected to a voice synthesizer on a telephone line with a
tone decoder. One dialed the system, and keyed in a
name and location code on the telephone's key pad; it
spoke back the person's telephone number and office
address (It didn't attempt to pronounce the name). In
spite of the hashing through twelve buttons (which, for
example, squashed "A," "B," and "C" together), it was
acceptably accurate: it had to give up on around 5 per-
cent of the tries. The program was a local hit and well-
used. Unfortunately, we couldn't find anyone to take it
over, even as a supported service within the company,
let alone a public offering, and it was an excessive
drain on our resources, so it was finally scrapped.
(I chose this example not only because it is old enough
not to exacerbate any current squabbles, but also be-
cause it is timely: The organization that publishes the
company telephone directory recently asked us
whether the system could be revived.)

Of course not every idea is worth developing or sup-
porting. In any event, the world is changing: Our ideas
and advice are being sought much more avidly than
before. This increase in influence has been going on for
several years, partly because of the success of UNIX,
but, more recently, because of the dramatic alteration
of the structure of our company.

AT&T divested its telephone operating companies at
the beginning of 1984. There has been considerable
public speculation about what this will mean for funda-
mental research at Bell Laboratories; one report in Sci-
ence [2] is typical. One fear sometimes expressed is that
basic research, in general, may languish because it
yields insufficient short-term gains to the new, smaller
AT&T. The public position of the company is reassur-
ing; moreover, research management at Bell Labs seems
to believe deeply, and argues persuasively, that the
commitment to support of basic research is deep and
will continue [1].

Fundamental research at Bell Labs in physics and
chemistry and mathematics may, indeed, not be
threatened; nevertheless, the danger it might face, and
the case against which it must be prepared to argue, is
that of irrelevance to the goals of the company. Com-
puter science research is different from these more tra-
ditional disciplines. Philosophically it differs from the
physical sciences because it seeks not to discover, ex-
plain, or exploit the natural world, but instead to study
the properties of machines of human creation. In this it
is analogous to mathematics, and indeed the "science"
part of computer science is, for the most part, mathe-

August 1984 Volume 27 Number 8 Communications of the ACM 759

Turing Award Lecture

matical in spirit. But an inevitable aspect of computer
science is the creation of computer programs: objects
that, though intangible, are subject to commercial ex-
change.

More than anything else, the greatest danger to good
computer science research today may be excessive rele-
vance. Evidence for the worldwide fascination with
computers is everywhere, from the articles on the fi-
nancial, and even the front pages of the newspapers, to
the difficulties that even the most prestigious universi-
ties experience in finding and keeping faculty in com-
puter science. The best professors, instead of teaching
bright students, join start-up companies, and often dis-
cover that their brightest students have preceded them.
Computer science is in the limelight, especially those
aspects, such as systems, languages, and machine archi-
tecture, that may have immediate commercial applica-
tions. The attention is flattering, but it can work to the
detriment of good research.

As the intensity of research in a particular area in-
creases, so does the impulse to keep its results secret.
This is true even in the university (Watson's account
[12] of the discovery of the structure of DNA provides a
well-known example), although in academia there is a
strong counterpressure: Unless one publishes, one
never becomes known at all. In industry, a natural im-
pulse of the establishment is to guard proprietary infor-
mation. Researchers understand reasonable restrictions
on what and when they publish, but many will become
irritated and flee elsewhere, or start working in less
delicate areas, if prevented from communicating their
discoveries and inventions in suitable fashion. Research
management at Bell Labs has traditionally been sensi-
tive to maintaining a careful balance between company
interests and the industrial equivalent of academic
freedom. The entrance of AT&T into the computer in-
dustry will test, and perhaps strain, this balance.

Another danger is that commercial pressures of one
sort or another will divert the attention of the best
thinkers from real innovation to exploitation of the cur-
rent fad, from prospecting to mining a known lode.
These pressures manifest themselves not only in the
disappearance of faculty into industry, but also in the
conservatism that overtakes those with well-paying
investments--intellectual or financial--in a given idea.
Perhaps this effect explains why so few interesting soft-
ware systems have come from the large computer com-
panies; they are locked into the existing world. Even
IBM, which supports a well-regarded and productive
research establishment, has in recent years produced
little to cause even a minor revolution in the way peo-
ple think about computers. The working examples of
important new systems seem to have come either from
entrepreneurial efforts (Visicalc is a good example) or
from large companies, like Bell Labs and most espe-
cially Xerox, that were much involved with computers
and could afford research into them, but did not regard
them as their primary business.

On the other hand, in smaller companies, even the
most vigorous research support is highly dependent on
market conditions. The New York Times, in an article

describing Alan Kay's passage from Atari to Apple,
notes the problem: "Mr. Kay . . . said that Atari's labora-
tories had lost some of the atmosphere of innovation
that once attracted some of the finest talent in the in-
dustry. "When I left last month it was clear that they
would be putting their efforts in the short term," he
said. . . "I guess the tree of research must from time to
time by refreshed with the blood of bean counters." [9]

Partly because they are new and still immature, and
partly because they are a creation of the intellect, the
arts and sciences of software abridge the chain, usual in
physics and engineering, between fundamental discov-
eries, advanced development, and application. The in-
ventors of ideas about how software should work usu-
ally find it necessary to build demonstration systems.
For large systems, and for revolutionary ideas, much
time is required: It can be said that UNIX was written
in the 70s to distill the best systems ideas of the 60s,
and became the commonplace of the 80s. The work at
Xerox PARC on personal computers, bitmap graphics,
and programming environments [10] shows a similar
progression, starting, and coming to fruition a few years
later. Time, and a commitment to the long-term value
of the research, are needed on the part of both the
researchers and their management.

Bell Labs has provided this commitment and more: a
rare and uniquely stimulating research environment
for my colleagues and me. As it enters what company
publications call "the new competitive era," its man-
agers and workers will do well to keep in mind how,
and under what conditions, the UNIX system suc-
ceeded. If we can keep alive enough openness to new
ideas, enough freedom of communication, enough pati-
ence to allow the novel to prosper, it will remain possi-
ble for a future Ken Thompson to find a little-used
CRAY/I computer and fashion a system as creative,
and as influential, as UNIX.

REFERENCES
1. Bell Labs: New order augurs well. Nature 305, 5933 (Sept. 29, 1983).
2. Bell Labs on the brink. Science 221 (Sept. 23, 1983).
3. Lesk, M. E. User-activated BTL directory assistance. Bell Laborato-

ries internal memorandum (1972).
4. Norman, D. A. The truth about UNIX. Datamation 27, 12 (1981).
S. Organick, E. I. The Multics System. MIT Press, Cambridge, MA, 1972.
6. Ritchie, D. M. UNIX time-sharing system: A retrospective. Bell Syst.

Tech. J. 57, 6 (1978), 1947-1969.
7. Ritchie, D. M. The evolution of the UNIX time-sharing system. In

Language Design and Programming Methodology, Jeffrey M. Tobias, ed.,
Springer-Verlag, New York, (1980).

g. Ritchie, D. M. and Thompson, I(. The UNIX time-sharing system,
Commun. ACM 17, 7 (July 1974), 365-375.

9. Sanger, D. E. Key Atari scientist switches to Apple. The New York
Times 133, 46, 033 (May 3, 1984).

10. Thacker, C. P, et el. Alto, a personal computer. Xerox PARC Techni-
cal Report CSL-79-11.

11. Thompson, K. UNIX time-sharing system: UNIX implementation.
Bell Syst. Tech. J. 57, 6 (1978}, 1931-1946.

12. Watson, J. D. The Double Helix: A Personal Account of the Discovery of
the Structure of DNA. Atheneum Publishers, New York (1968}.

Author's Present Address: Dennis M. Ritchie, AT&T Bell Laboratories,
600 Mountain Avenue, Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

760 Communications of the ACM August 1984 Volume 27 Number 8

