
By 邓侃 Ph.D, 罗彦, 焦洋

SmartClouder.com

2 / 29

/ 293

• Big，

Over 100 million users.

Over 1 billion tweets.

Growing every minutes.

• Uneven,

Different number of followers.

Different number of tweets at diff time.

e.g. Inauguration of Obama, 1/20/2009,

Peak time 350 tweets / second,

Be forwarded over 40K times / second.

/ 294

Following Be Followed

Tweet Category
Tweet

ordered by time

Tweet
Reference

/ 295

• A simple implementation of Twitter:

Create tables to store the relationship,

Create tables to update the tweets.

• When Mr.481293 writes a Tweet 6792321,

“如果我们的云计算公开课 …”，

Twitter system will push the Tweet,

into his follower’s Newsfeed table.

• e.g. Tweet 6792321 is pushed into

Mr.481293’s follower,

Mr.193922’s Newsfeed.

ID Following ID Follower ID

748229 481293, 223838, … 193922, …

481293 223838, … 748229, 193922, ...

Tweet ID Time Stamp Author ID

6793232 2012030618455245 748229

6793231 2012030618455243 481293

Tweet ID Tweet Content

6793232 我就喜欢这样的挑战文化。

6793231 如果我们的云计算公开课，被砸了场子，
那将是我们的荣幸，因为真正的牛人出
现了！

Reader ID Tweet ID in Newsfeed

193922 6793232, 6793231, …

748229 6793231, …

/ 296

ID Following ID Follower ID

748229 481293, 223838, … 193922, …

481293 223838, … 748229, 193922, ...

Tweet ID Time Stamp Author ID

6793232 2012030618455245 748229

6793231 2012030618455243 481293

Tweet ID Tweet Content

6793232 我就喜欢这样的挑战文化。

6793231 如果我们的云计算公开课，被砸了场子，
那将是我们的荣幸，因为真正的牛人出
现了！

Reader ID Tweet ID in Newsfeed

193922 6793232, 6793231, …

748229 6793231, …

/ 297

Mr.481293 writes

“如果我们的云计算公开课 …”.

/ 298

Ignore this part

Tables stored in database

Operations run by App Server.

Web Page assembled
by Web Server.

/ 299

A simple but workable
Twitter system.

The real Twitter
system architecture.

/ 2910

• Why not use so many caches?

Disk IO is much slower than RAM IO.

But disk is permanent storage, cache is not.

• Message transportation,

Why not HTTP? Overhead.

200ms - 500ms for tweet publishing.

• Why doesn’t the newsfeed table contain

Tweet content directly,

rather than Tweet IDs?

/ 2911

• Define the data structure first,

Decide the workflow,

Design the architecture.

• Use IDs more, move content less.

So called, “separate signal control from data flow”.

• Use cache more, write into disk less.

Database is usually bottleneck.

12 / 29

/ 2913

• 500ms for tweet publishing,

Disk IO is million times slower than RAM.

• E.g. By using Varnish, to cache search results,

Twitter load decreased for 50%.

/ 2914

Program that
uses MemCached.

Usage of MemCached.

/ 2915

• Slabs are RAM spaces of fixed-size.

• The slabs of the same size,

are grouped into SlabClass.

• Each slab consists of many chunks.

Usually in the same slab,

the chunks are of the same size.

• Each chunk usually contain one item.

An item is a pair of (Key, Value).

• Slots is an address list pointing to the re-usable chunks.

• Why split the RAM into fixed-size slabs?

Easy to re-use,

but may waste from space.

/ 2916

• Before caching an item,

find the slab with the appropriate size,

equal or a little bigger than item.

/ 2917

• So far, we learned how to use one single MemCached.

• In case one cache is not sufficient for a large amount of data,

then we need more cache instances (nodes).

• The cache instances doesn’t communicate with each other.

Also, there is no shared information.

• When getting a cached data, how to know where it is cached previously?

/ 2918

• When getting a cached data, how to know where it is cached previously?

• Solution 1, maintain a lookup table, {node, (key1, key2, …)}.

Lookup table may consume too much memory space.

• Solution 2, use Hash algorithm, node = Hash(key) % (# of nodes).

Works fine if all nodes run reliably, and the number of nodes does not change.

Key Tokyo Beijing New York Hong Kong Sydney Paris London Moscow

Hash(Key) 1 2 3 4 5 6 7 8

Node = hash %
(# nodes)

1=1%3 2 0 1 2 0 1 2

/ 2919

• Suppose when items are cached, there are 3 cache nodes,

but when items are fetched, there are 4 cache nodes.

• There will be many items, cached previously but miss hit.

• Not a lethal damage, but increase database’s load.

Key Tokyo Beijing New York Hong Kong Sydney Paris London Moscow

Hash(Key) 1 2 3 4 5 6 7 8

Node = hash %
(# nodes)

1=1%3 2 0 1 2 0 1 2

3 cache nodes.

Key Tokyo Beijing New York Hong Kong Sydney Paris London Moscow

Hash(Key) 1 2 3 4 5 6 7 8

Node = hash %
(# nodes)

1=1%4 2 3 0 1 2 3 0

4 cache nodes.

/ 2920

• Suppose when items are cached, there are 3 cache nodes,

but when items are fetched, there are 4 cache nodes.

• Map the hash values into the various cache node.

Why 2^32? Because each cache node as an IP address, which is 4 bytes, 32 bits.

• There will be only a few items, cached previously but miss hit.

Key Tokyo Beijing New York Hong Kong Sydney Paris 。。。 Moscow

Hash(Key) 1 2 3 4 5 6 。。。 2^32

Node 1 2 3

3 cache nodes.

4 cache nodes.

Key Tokyo Beijing New York Hong Kong Sydney Paris 。。。 Moscow

Hash(Key) 1 2 3 4 5 6 。。。 2^32

Node = hash %
(# nodes)

1 4 2 3

/ 2921

• In academia, the algorithm is called

Consistent-Hash.

• Its mission is to reduce miss-hit,

when adding or deleting cache nodes.

• Also applicable to many other uses,

including No-SQL database.

• Map each node's IP

onto a ring of size 2^32.

• Use the same mapping algorithm,

map the key to the same ring.

• Clock-wisely find the node on the ring,

which is nearest to the key.

• When adding or deleting a node,

only a few keys will be affected.

/ 2922

• Cache is for read only.

Whenever update occurs, cache must be updated according.

• Internal data structure, fixed-size for easy-reuse.

Reuse the same space to store different data from time to time.

• When using multiple cache nodes,

Consistent Hash reduces mis-hits, when adding or deleting nodes.

23 / 29

/ 2924

• Message transportation,

Why not HTTP? Reduce overhead.

• More layers of protocols, more processing cost.

• Especially for frequent, but small-sized control signal messages,

as fewer protocol layers as possible.

HTTP
Encapsulation

/ 2925

• TCP connection, Server-side:

1. Open ServerSocket

2. Accept Connection

3. Read Request

4. Send Response

5. Close Connection.

• Stream oriented vs. Buffer oriented

Block IO vs. Non blocking IO

• Encoding/decoding objects.

IDL, XML, JSON

• Remote Procedure Call (RPC)

CORBA, DCOM, SOAP, RMI

• Cross languages.

• Any tool to make it easier?

/ 2926

• THRIFT is

A cross-language framework,

to generate skeleton programs,

to setup TCP/IP connections,

of different types.

• THRIFT supports

the encoding/decoding

of popular data-types,

also supporting RPC.

• THRIFT is

an open framework.

User can plug-in

self-developed

transport, protocol,

and data-types.

Types

User defines data structs and service APIs,

Write into a script file “xxx.thrift”.

In command line, compile the script file, generate several

THRIFT skeleton programs, of different language.

Processor
User implements the skeleton program, with the service

business logics.

Protocol

User implements the skeleton programs, specifying the

encoding/decoding mechanism, by calling THRIFT protocol

APIs.

Transport

User implements the skeleton programs, specify the blocking

vs non-block, streaming vs buffering connection type, by calling

THRIFT transport APIs.

Client side Server side

/ 2927

Usage of Thrift.

1. Write Thrift script.

2. Compile the script,

generate a few skeleton programs.

3. Fill the details into the skeleton.

4. Compile the skeleton programs,

and deploy, then run!
thrift –r –gen cpp service.thrift

service_constants.h service_constants.cpp

service_types.h service_types.cpp

SharedService .h,

SharedService .cpp, SharedService_server.skeleton.cpp

Example:

http://www.javabloger.com/article/thrift-java-code-

example.html?source=rss

http://dongxicheng.org/search-engine/thrift-rpc/

http://www.javabloger.com/article/thrift-java-code-example.html?source=rss
http://www.javabloger.com/article/thrift-java-code-example.html?source=rss
http://www.javabloger.com/article/thrift-java-code-example.html?source=rss
http://www.javabloger.com/article/thrift-java-code-example.html?source=rss
http://www.javabloger.com/article/thrift-java-code-example.html?source=rss
http://www.javabloger.com/article/thrift-java-code-example.html?source=rss
http://www.javabloger.com/article/thrift-java-code-example.html?source=rss
http://dongxicheng.org/search-engine/thrift-rpc/
http://dongxicheng.org/search-engine/thrift-rpc/
http://dongxicheng.org/search-engine/thrift-rpc/
http://dongxicheng.org/search-engine/thrift-rpc/
http://dongxicheng.org/search-engine/thrift-rpc/

/ 2928

• Network connection programming is different.

Transport, Protocol, Processor ...

• Framework generates skeleton,

You write a script, Thrift generates skeletons, then you fill in the details.

29 / 29

• No stupid questions, but it is stupid if not ask!

• Ask a good question, and impress your professor and classmates!

