

ECOC2011 WORKSHOP ON OPENFLOW EXTENSIONS TOWARDS MULTI-LAYER AND MULTI-DOMAIN NETWORKS: OFELIA

- To present one of the approaches investigated by Ericsson Research on how to extend OpenFlow to support multi-layer/multi-technology switches
- To welcome feedback and discuss with other groups present today, who perhaps are investigating different approaches

1. INTRODUCTION

2. CONTROL PLANE

3. OPENFLOW MULTI-LAYER/MULTI-REGION EXTENSIONS

1. INTRODUCTION

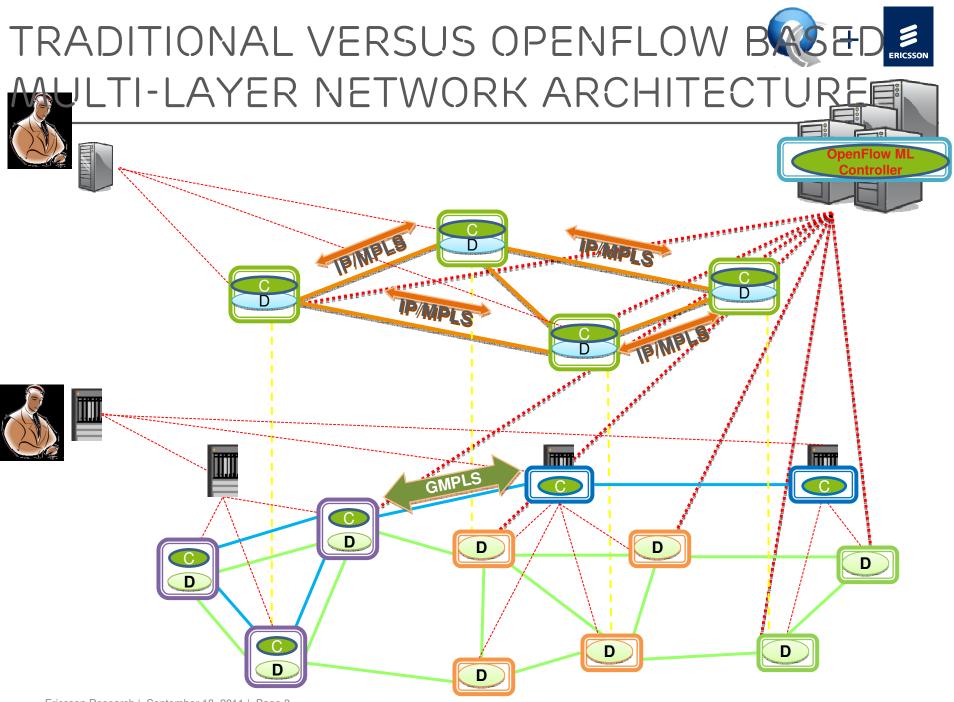
SCOPE

- The presentation covers
 - the components and the basic functionalities of a multi-layer/multiregion optical (WDM) switch;
 - the OpenFlow protocol extensions required to manage it from a remote controller.
- Main starting point references were:
 - CCAMP Working Group, Common Control and Measurement Plane (CCAMP)
 - Stanford studies on "Extensions to OpenFlow Protocol in Support Circuit Switching" (S. Das)
 - Outcomes of Ericsson long term studies and solutions on Packet Optical Integration

OBJECTIVE: PACKET OPTICAL INTEGRATION

- Benefits of OpenFlow for Split Architecture have been proven.
- > Why we need extensions for ML/MR now?
 - Because the current transport networks (mainly based on SONET/SDH) tend to be too slow to react dynamically to router traffic shifts
 - Packet optical integration is a cost effective practice that will allow the packet based routers and switches to operate jointly with the optical network elements.

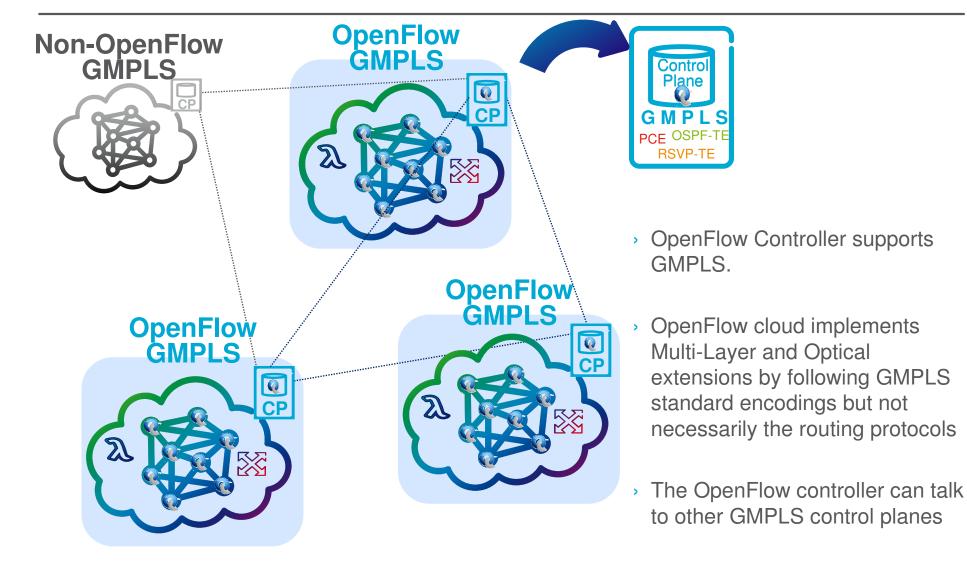
PACKET OPTICAL INTEGRATION POSSIBILITIES WITH OPENFLOW


MULTI-LAYER/MULTI-REGION OPENFLOW: FULL GMPLS SUPPORT

MULTI-LAYER/MULTI-REGION OPENFLOW : GMPLS UNAWARE

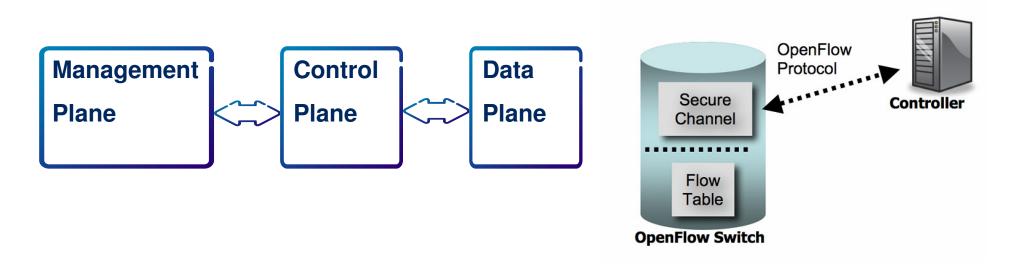
MULTI-LAYER/MULTI-REGION OPENFLOW: PARTIAL GMPLS SUPPORT WITH REUSE OF TERMINOLOGY TO DESIGNATE

1-CIRCUIT NESTING CONCEPT2-ADAPTATION CONCEPT3-ENCODINGS AND SWITCHTYPES


•••

Ericsson Research | September 18, 2011 | Page 8

DESIGN USE CASE SCENARIO



2. CONTROL PLANE

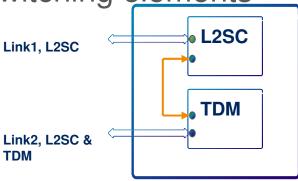
OPENFLOW BASED CONTROL PLANE

- > OpenFlow control plane:
 - a transport layer (layer 4) secure channel to connect the node to its controller (to control and manage the node)
 - inside the node, the interface between the data plane and this channel is implementation specific

MULTI-LAYER/MULTI-REGION CONTROLLERS

References: RFC3471 , RFC3945 , RFC4397 , RFC5212 , RFC5339 and RFC6001 .

- Region refers to switching technologies (e.g. PSC or TDM)
- Layer refers to granularities inside a switching region.
 (e.g. in TDM, an OC12 or a VC12 are layers)
- The interfaces on a GMPLS router or node can have one or many of the minimum six standard switch types:


The interface can be

- 1. Packet switch capable (PSC),
- 2. Layer 2 switch capable (L2SC),
- **3.** Time division multiplex capable (TDM),
- 4. Lambda switch capable (LSC) or
- 5. Fiber switch capable (FSC).
- 6. RFC6002 defines a sixth region for port switching called data channel switch capable (DCSC)

MULTI-LAYER/MULTI-REGION CONTROLLERS (CONT.)

- A node can have a single or multiple switching type capabilities (Multi-Region node)
- Nodes with multiple switching type capabilities are further categorized as *simplex* or *hybrid*
- This Hybrid is not to be confused with OpenFlow-Hybrid switches which support both OpenFlow and non-OpenFlow pipelines
- > The nodes that have at least one interface that supports more than one switching capability are called hybrid nodes
- A hybrid node has thus more than one switching elements (matrices) interconnected internally:

MULTI-LAYER/MULTI-REGION CONTROLLERS (CONT.)

- The Interface switching capability (ISC) is the interface's ability to forward data of a particular data plane technology (one of the six regions)
- Internal links connecting the switching matrices in hybrid switches have finite capacities
- This adjustment capacity information is critical for <u>path</u> <u>computation</u>
- This adjustment capacity information is available in the ISC descriptor (ISCD), advertised by routing protocols for each link
- Because, when link bundling is performed ..this information is lost.
 - and RFC6001 proposes the IACD extensions for GMPLS signaling

GMPLS ENCODINGS

Ericsson Research | September 18, 2011 |

> GMPLS general label format encoding RFC3471:

8 bits	8 bits	16 bits		
Encoding	Switch Type	General Payload ID		

> GMPLS TDM label format encoding RFC4606:

16 bits	4 bits	4 bits	4 bits	4 bits
S	U	K	L	М

	SONET	SDH
S=1→N	-N>1, S=0 for STS-1	-N>0, S=0 for STM-0
	-Index of STS-3 inside an STS-3N	-Index of AUG-1 inside an STM-N
U=1 <i>→</i> 3	-N>1, U=0 for STS-1 (only significant for STS-3N)	-N>0, U=0 for STM-0
	-Index of a particular STS-1 SPE within an STS-3	-Index of a particular VC-3 within an AUG-1
K=1→3 (TUG-3)		-Is the index of a particular TUG-3 within a VC-4
L=1→7	-Is the index of a particular VTG within an STS-1 SPE	-Is the index of a particular TUG-2 within an TUG-3 or VC-3
(TUG-2)		i de subscriet de la referit de la contractivité de la contractivité de la contractivité de la contractivité de E
M=1→9 (SONET)	-Index of a particular VT1.5_SPE, VT2_SPE, or VT3 SPE within a VTG	-Index of a particular VC-11, VC-12 within a TUG-2
M=3→9 (SDH)	-M=1->2 indicates a specific VT3 SPE inside the corresponding VTG (VT3 #1 &2)	
	-M=3->5 indicates a specific VT2 SPE inside the corresponding VTG (VT2 #1 to 3)	-M=3->5 indicates a specific VC-12 inside the corresponding TUG-2 (VC- 12 #1 to 3)
	-M=6->9 indicates a specific VT1.5 SPE inside the corresponding VTG (VT1.5 #1 to 4)	-M=6->9 indicates a specific VC-11 inside the corresponding TUG-2 (VC 11 #1 to 4)

GMPLS ENCODINGS (CONT.)

> GMPLS WDM label format encoding RFC6205:

3 bits	4 bits	9 bits	16 bits
Grid	Ch. Spacing	ID	n

Grid	Value
Reserved	0
ITU-T DWDM	1
ITU-T CWDM	2
Future use	3-7

Ch. Spacing (THz)	Value
Reserved	0
0.1	1
0.05	2
0.025	3
0.0125	4
Future use	5-15
Ch. Spacing (nm)	Value
Reserved	0
20	1
Future use	2-15

- > 16 bit value *n* as a two's complement integer to compute :
 - DWDM Frequency (THz) =

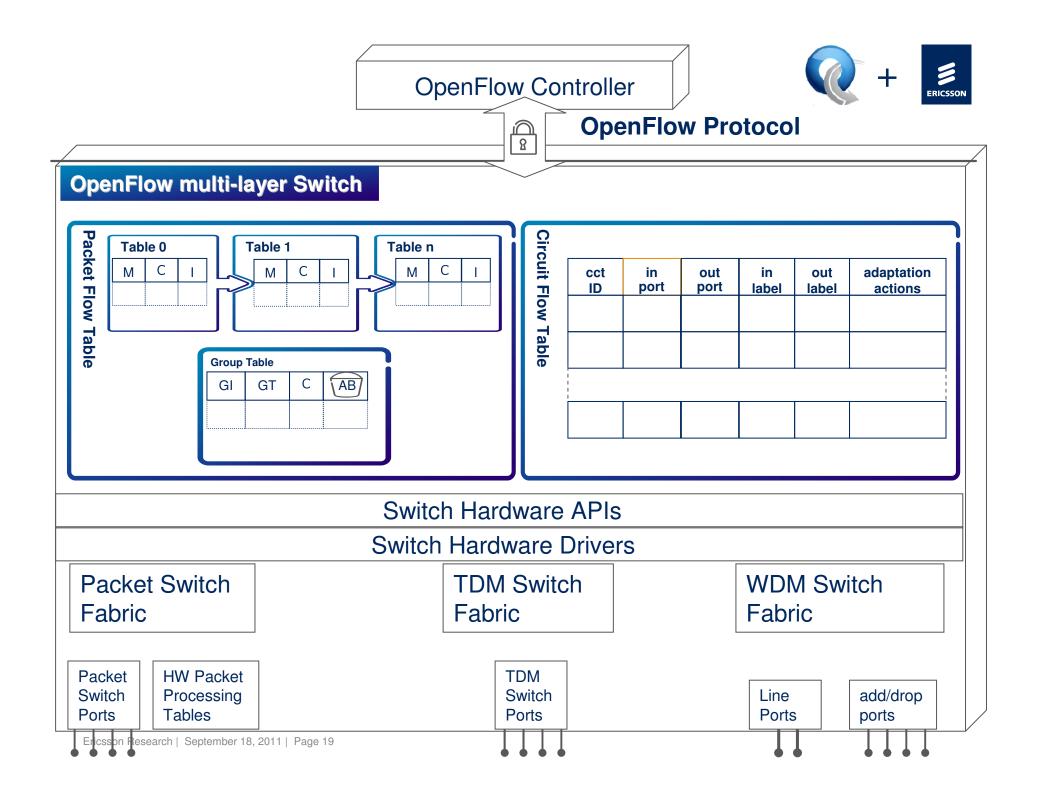
193.1 THz + n * channel spacing (THz)

- CWDM Wavelength (nm) =

1471 nm + n * 20 (nm)

The recent revision of ITU-T Recommendation [G.694.1] has decided to introduce the flexible grid DWDM technique which provide a new tool that operators can implement to provide a higher degree of network optimization than fixed grid systems.

http://tools.ietf.org/html/draft-li-ccamp-flexible-grid-label-00



3. OPENFLOW MULTI-LAYER/MULTI-REGION EXTENSIONS

NEEDED EXTENSIONS

- Fundamental difference between circuit switched and packet switched OpenFlow:
 - the flow table is not used to *lookup* circuit flows
 - OpenFlow controller only responsible for setting up the crossconnections in the switch (OpenFlow protocol to establish circuits and receive stats messages from the switch)
 - cross-connections established in a *proactive* way.
- Possibility: a packet sent to the controller can trigger the establishment of a new circuit cross-connect (or pre-configured cross-connects, similar to virtual TE-links in GMPLS).

EXAMPLE EXTENSIONS

- > New circuit IDs serve as <u>virtual ports</u> to other flows
- Circuit IDs are virtual ports to which incoming packet flows can be forwarded
- Other circuit flows can also point to a circuit ID, and hence represent a circuit hierarchy (the equivalent to GMPLS LSP nesting)
- Since the circuit flows do not affect the on the fly processing of packets, they can be implemented in software

EXAMPLE EXTENSIONS (CONT.)

> Circuit flow entry:

CCT ID	in port	out port	label in	label out	adaptation
			(e.g. encoding,ST,G-PID)	(e.g. encoding,ST,G-PID)	actions

- Circuit Identifier (CCT ID):
 - a 32 bit unsigned integer representing the circuit flow-virtual port
- In Port/Out Port:
 - a 32 bit unsigned integer representing the incoming/outgoing port.
- In Label/Out Label:
 - a 32 bit unsigned integer representing the incoming/outgoing signal
 - the general way is to specify the encoding, switch type and payload ID (using GMPLS standard encodings as presented before)
- No adaptation standardized with GMPLS yet OpenFlow actions used de specify different adaptations

NEXT STEPS

- The extensions need to be fine tuned and precisely specified : implementation to be completed before the end of the year
- OpenFlow 1.1 has been considered. The extensions may have to be remapped to new ONF architectural guidelines

ERICSSON