# **Network Virtualization**



### Agenda

- VMware Virtualization Overview
- Access Layer Virtualization
  - Virtual NIC
  - Virtual Standard Switch
  - Uplink
  - Distributed Virtual Switch
- Data Center Network Virtualization
  - vShield
  - VXLAN

### **Basic concept : Virtualization**



**Traditional Architecture** 

**Virtual Architecture** 

### **vm**ware

Copyright © 2012 VMware Inc. All rights reserved.

### VMware ESXi: 3<sup>rd</sup> Generation Hypervisor Architecture

VMware GSX (VMware Server)

- Installs as an application
- Runs on a host OS
- Depends on OS for resource management

os

VMware Server

Windows or Linux OS

OS

os

OS

#### VMware ESX

- Installs "bare metal"
- Complete HW management
- Relies on a Linux OS (Service Console) for running agents and scripting

APP

OS

VMware ESX

2003

APP

OS

APP

OS

Service Console

APP

OS

APP

OS

VMkernel

#### VMware ESXi

- Installs "bare metal"
- Complete HW management
- Management tasks are moved outside of the hypervisor (3rd party integration via APIs and CIM; scripting via vRCLI)



2007

2001

# **Key Properties of Virtualization**

Partitioning

- · Run multiple operating systems on one physical machine
- Divide system resources between virtual machines





**Isolation** 

- Fault and security isolation at the hardware level
- Advanced resource controls preserve performance

#### **Encapsulation**

- Entire state of the virtual machine can be saved to files
- Move and copy virtual machines as easily as moving and copying files





Hardware Independence

 Provision or migrate any virtual machine to any similar or different physical server

### **vm**ware

Copyright © 2012 VMware Inc. All rights reserved.

# VMware vSphere Deployment Architecture



Deploy ESXi on each host

- Add vCenter Server to Centrally manage ESXi hosts
- Upgrade license file to vSphere

# Agenda

- Virtualization
- Access Layer Virtualization
  - Virtual NIC
  - Virtual Standard Switch
  - Uplink
  - Distributed Virtual Switch
- Data Center Network Virtualization
  - vShield
  - VXLAN

### **Access Layer Virtualization**

- Traditional access layer switch is moved into hypervisor
  - Virtual NICs (vNIC) are added to VMs
  - Virtual Standard Switch (VSS) is introduced between VMs and physical network
  - Uplink layer is added to connect VSS to upstream physical switches
  - Distributed Virtual Switch (DVS) is added to support distributed configuration



### **Access Layer Virtualization - Virtual NIC**





Copyright © 2012 VMware Inc. All rights reserved.

### **Virtual NICs**

- Emulated layer 2 device used to connect to the vSwitch
  - Each virtual NIC has a MAC address of its own does address based filtering
- No need for implementation of a PHY (Physical Layer)
  - No auto-negotiation
  - Speed/Duplex/Link are irrelevant
    - Ignore speed/duplex reported in the guest OS
  - Actual speed of operation depends on the CPU cycles available and speed of the uplinks.
- Different types of Virtual NICs
  - Virtual adapter for VMs
    - VLance, E1000, vmxnet2/vmxnet3(vmware)
  - Vswif for Service console(not in ESXi)
  - Vmknic for VMKernel

# Virtual NIC Hardware Offload

- Delay process some hardware offloading capabilities to physical NICs or process them with software if physical NICs do not support them at uplink layer
  - VLAN
  - TSO
  - LRO
  - Checksum offload



# Access Layer Virtualization – Virtual Standard Switch (VSS)





Copyright © 2012 VMware Inc. All rights reserved.

### Virtual Standard Switch (VSS)

- Software implementation of an Ethernet switch
- How is it similar to a physical switch?
  - Does MAC address based forwarding
  - Provides standard VLAN segmentation
  - Configurable
- How is it different?
  - Does not need to learn MAC addresses
    - It knows the MAC addresses of the virtual NICs connecting to it
  - Single tier topology
    - No need to participate in Spanning Tree Protocol
  - Overall fewer bells and whistles, but provides some unique features

### Portgroups

- Portgroups are configuration templates for ports on the vSwitch
  - Efficient way to specify the type of network connectivity needed by a VM
- Portgroups specify
  - VLAN Configuration
  - Teaming policy
  - Layer 2 security policies
  - Traffic shaping parameters
- Portgroups are not VLANs
  - Portgroups <u>do not</u> segment the vSwitch into separate broadcast domains unless they have different VLAN Ids



# **Implications of L2 Security Policies**

- Promiscuous Mode
  - If allowed, guest receives all frames on the vSwitch
  - Some applications need promiscuous mode
    - Network sniffers
    - Intrusion detection systems
- MAC Address Change
  - If allowed, malicious guests can spoof MAC addresses

| vSwitch1 Properties                                   |                                          |                                               |  |  |  |  |
|-------------------------------------------------------|------------------------------------------|-----------------------------------------------|--|--|--|--|
| Ports Network Adapters                                |                                          |                                               |  |  |  |  |
| Configuration<br>vSwitch<br>Production                | Summary<br>24 Ports<br>Virtual Machine   | Port Group Properties Network Label: VLAN ID: |  |  |  |  |
| General Security Traffic Shaping NIC Teaming          |                                          |                                               |  |  |  |  |
| Promiscuous Moo<br>MAC Address Ch<br>Forged Transmits | le: 🔽 Reje<br>anges: 🔽 Acce<br>s: 🖾 Acce | ct 🔹                                          |  |  |  |  |

- > Forged Transmits
  - If allowed, malicious guests can cause MAC Flooding and/or spoofing
- Security settings should reflect application requirements
  - Some applications might need to forge or change MAC addresses
    - E.g.: Microsoft NLB in unicast mode works by forging MAC addresses.

## **Notify Switch**

- Client MAC address is notified to the switch via RARP packet
- Allows the physical switch to learn the MAC address of the client immediately
- Why RARP?
  - L2 broadcast reaches all switches
  - L3 information not required
- Switch notified whenever
  - New client comes into existence
  - MAC address changes
  - Teaming status changes
- Settings should reflect application requirements



# VLAN

- Carves out distinct layer 2 broadcast domains
- VSS supports IEEE 802.1Q format
  - 4 byte VLAN tag inserted in the frame
- Three types of VLAN configurations
  - External Switch Tagging
  - Virtual Switch Tagging
  - Virtual Guest Tagging



#### 802.1Q Frame Format:



# **External Switch Tagging**



### Copyright © 2012 VMware Inc. All rights reserved.

# **Virtual Switch Tagging**



- The vSwitch tags outgoing frames with the appropriate VLAN ID.
- The vSwitch strips any VLAN IDs before delivering frames to VMs.
- Multiple VLAN IDs on single physical NIC.
- Physical switch port should be a trunk port.
- Number of VLANs per VM is limited to the number of vNICs.

# **Virtual Guest Tagging**



- Portgroup VLAN ID is set to 4095
- Tagging and stripping of VLAN IDs happens in the guest VM
- In VGT mode guest can send/receive any VLAN tagged frame
- Number of VLANs per guest is not limited to the number of vNICs

# **Access Layer Virtualization – Uplink**



#### **vm**ware

Copyright © 2012 VMware Inc. All rights reserved.

### **Uplink Layer**

Uplinks :

Physical Ethernet adapters serve as bridges between virtual and physical networks. In VMware Infrastructure, they are called uplinks, and the virtual ports connected to them are called uplink ports. A single host may have a maximum of uplinks, which may be on one switch or distributed among a number of Switches.



# NetQ – (Multiple Queue/Ring)



### **vm**ware

Copyright © 2012 VMware Inc. All rights reserved.

### **Netqueue - Rx**



- Program the queue with Guest MAC address
- Assign a unique MSI-X interrupt
- NIC classifies the packet based on MAC address
  - DMA to memory for the queue
- 2. Vmkernel delivers the packet to virtual device
- Virtual device posts virtual interrupt to the guest OS

### **Netqueue – Rx – Load Balance**



### Load balancing

- Limited queues (default queue for rest of the VMs)
- Reprogram the queues based on the load on the VMs every 5s by default
- Queues: VMs = 1: N (N is multiple filter per queue)

### **Netqueue - Tx**



- Tx queue number is based on Teaming policy.
- ► Tx load balancer runs every 5s.
- every 5s \* 40(DecayCounter), reset.
- Broadcast packets only send in default queue.

# Teaming

- Allows for multiple active NICs to be used in a teaming configuration.
- User can choose the policy for distribution of traffic across the NICs.
- Standby uplinks replace active uplinks when active uplinks fail to meet user specified criteria



uplink ports



# **Portgroup Based Teaming Configuration**

- Teaming policy attributes can vary by portgroups on a single vSwitch
- Load balancing policies
  - Originating Port ID based
  - IP hash based
  - Source MAC address based
  - Explicit failover order
  - Load balance based



| æ | VLAN 106 Portgroup Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | × |  |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
|   | General       Security       Traffic Shaping       NIC Teaming         Policy Exceptions       Image: Construct of the construction o |   |  |  |  |  |
|   | Failover Order:  Override vSwitch failover order: Select active and standby adapters for this port group. In a failover situation, standby adapters activate in the order specified below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |  |  |

# **Teaming Based on Port ID or MAC Hash**

- An uplink is chosen based on
- Sender's vSwitch Port ID or LSB of the source MAC
  - Load balancing on a per vNIC basis
  - Allows teaming across physical switches in the same broadcast domain
  - Does not require the physical switches to be aware of the teaming
  - The physical switch learns the MAC/ switch port association
    - Inbound traffic is received on the same NIC



# **Teaming Based on IP Hash**

- Uplink chosen based on
- Source and Destination IP • Address
  - Load balancing on a per connection basis
  - Requires physical switch to be aware of the teaming
  - Does not allow teaming across physical switches
  - Inbound traffic can be received on any one of the uplinks
  - Static link aggregation on physical switch.

switch ports

Need to enable Link



### **Load Based Teaming - Basics**

- Teaming Algorithm based on physical NIC load
- Avoids congestion on one physical NIC
- Algorithm
  - Every 30 Sec physical NIC load check is performed
  - If greater than 75% mean utilization on Tx or Rx is detected, LBT is invoked
  - Based on the utilization number of other NICs in the team and VNIC BW decision is made to move the traffic.
  - Works with mismatched port speeds as well.

### **Load Based Teaming - Example**

Consider a two - one gig interfaces in a team configuration



# **Passthrough – Another Option**



### **Passthrough – Use cases**

- Use case: Appliance VMs or special purpose VMs
  - Unsupported devices Graphics, TOE
- Get the management benefits of VMs
- Get high performance by avoiding emulated I/O



# Access Layer Virtualization – Distributed Virtual Switch (DVS)





Copyright © 2012 VMware Inc. All rights reserved.

# **Distributed Virtual Switch (DVS)**

- DVS is a distributed management layer across a set of ESX hosts
  - A high level virtual switch is established above vSwitch
    - VMs are connected to DVS's port (DVPort)
    - Each DVPort is associated with a data plane port
    - DVPort's configuration and life cycle are managed by a centralized node



# **DVS Architecture**

- Components
  - VC server
    - Store DVS configuration
    - Responsible for pushing configuration to ESX hosts
  - Data plane
    - Data plane is created when a host is added to a DVS
    - Configuration from VC is cached
    - VM traffic flows through data plane on the local host



# **DVS vs VSS: Configuration**

### VSS

 An administrator has to configure hosts one by one

### • DVS

 A central node dispatches configuration to each host on behave of the administrator









# **DVS vs VSS: vMotion Support**

# vMotion support

- VSS
  - Before vMotion, an administrator has to manually create a port on the destination host with the same configuration
- DVS
  - During vMotion, the port configuration, as well as other port status, is migrated to the destination host automatically along with the VM



### **vDS Features: NetFlow**

- NetFlow is a technology used to collect network traffic information
  - Flow
    - A sequence of packets with the same properties, such as source/destination IP, source/destination port, etc
    - The collected information includes packet number, total bytes, etc
- Components
  - · Probe: monitor traffic and update flow information to record cache
  - Record cache: keep and age flow information
  - · Exporter: export expired records to collector
  - · Collector: summarize records and show the result to users
- NetFlow information can be used for troubleshooting, auditing, etc



### **vDS Features: DVMirror**

- DVMirror
  - VMware's port mirroring implementation
  - Used for troubleshooting, traffic monitoring, etc
- Local Mirror
  - Source and destination are on the same host



- Remote Mirror
  - Destination is on another host, or a physical box
  - Mirrored traffic is transmitted via a tunnel



#### Copyright © 2012 VMware Inc. All rights reserved.

### vDS Features: Network I/O Control

### 1GigE pNICs





- NICs dedicated for some traffic types e.g. vMotion, IP Storage
  - Bandwidth assured by dedicated physical NICs



- Traffic typically converged to two 10 GigE NICs
- Some traffic types could dominate others.
- Hence need Traffic Management

### **Network I/O Control - Parameters**

- Limits and Shares
  - Limits specify the absolute maximum bandwidth for a traffic type
  - Specified in Mbps
    - Traffic will never exceed its specified limit
  - <u>Shares</u> specify the <u>relative importance</u> of an egress traffic on a <u>vmnic</u> i.e. <u>guaranteed minimum</u>
    - Specified in abstract units, from 1-100
    - Presets for Low (25 shares), Normal (50 shares), High (100 shares), plus Custom
    - Bandwidth divided between traffic types based on their relative shares
  - Controls apply to <u>output</u> from ESXi host
  - <u>Shares</u> apply to a given <u>vmnic or uplink</u>
  - Limits apply across the team

### **Network I/O Control - Example**

### •Shares Example: VM=25; Vmotion=50; iSCSI=100





### **Network I/O Control - Benefits**

- Network I/O Control provides
  - Isolation
    - One flow should not dominate others
  - Flexible Partitioning
    - Unused bandwidth is automatically distributed to other traffic type
  - Guarantee Service Levels when flows compete
  - User Defined Network Resource Pools
  - QoS Tagging to provide End to End service guarantees
- Supports 7 different traffic types
  - Management, iSCSI, vMotion, FT, NFS, VM, VR

## **Network I/O Control - Multi-Tenant + CNA Offload**



Copyright © 2012 VMware Inc. All rights reserved.

# Agenda

- Virtualization
- Access Layer Virtualization
  - Virtual NIC
  - Virtual Standard Switch
  - Uplink
  - Distributed Virtual Switch
- Data Center Network Virtualization
  - vShield
  - VXLAN

### **Data Center Network Virtualization**

- VXLAN: distributed virtual L2
- vShield: private network management







### **Security Requirements**

- Server: antivirus, data integrity, ...
- Region: firewall, ...
- Edge: firewall, tunnel, WAN optimization, ...



### **Consolidate Security Functions into Hypervisor**



# vShield: Multilayer Security



#### **vm**ware

Copyright © 2012 VMware Inc. All rights reserved.

# vShield Endpoint

- Security as service
- Protection
  - Tamper-resistance AV engine not directly accessible by malware
- Efficiency
  - No redundancy of AV code, virus definitions and updates



## vShield App

- vShield App protects among regions
  - Firewall rules are pushed from VSM
  - Traffic is filtered by firewall engine





### vShield Edge

- vShield Edge: a virtual gateway sitting on the edge of a tenant's virtual network
  - Provide network services: NAT, DHCP, etc
  - Secure the Edge of the Virtual Data Center



# vShield Edge Deployment

- Isolation via VLAN
  - Each edge has two interface, located in different VLANs



### vShield Edge Traffic Flow

 Tenant Y's VM on Host1 sends packets to tenant X's VM on Host 2



**VXLAN** 



### Whv VXLAN?



### Drivers

- Need cross cluster mobility
- Enable provisioning workload where compute is available. Avoid operational heaviness of VLAN's
- Provision large number of tenants (>4K limits of VLAN's, avoid STP)
- Enable stateful movement of workloads (vMotion Anywhere) and failover scenarios with SRM

### Unterher the workload from the physical network

### **VXLAN: Enabling Elastic Compute**



#### **Overview**

VXLAN allows mobility across subnet boundaries

Foundation for elastic portable VDC's

#### **Benefits**

•Cross cluster mobility within or across datacenters

•On demand networks without physical network re-configuration

•Massive scale for multi-tenant environments

### **VXLAN** at High Level



Build VXLAN wires and gateway on a network pool

Build network scopes based on compute containers

Build VXLAN fabric – Select your compute fabric, VDS, transport VLAN and multi-cast pool

### Logical view of VXLAN



**Key Properties** 

- Works with any switching fabric without change even across WAN
- Maintain visibility and control for network admins
- API to authoritatively program the logical network

### **VXLAN - Details**





### VXLAN Gateway

- Connect with legacy VLAN envs
- Inter VXLAN routing
- Provides Services

### **Frame format**

- VXLAN Network ID (VNI) is 24 bits up to 16M networks
- Leverage ECMP by using UDP for encapsulation
- Uses Multicast to replicate for broadcast/unknown forwarding - leverages PIM and IGMP pruning for traffic management

### **VXLAN - How**

| 192.168.1.1<br>VM          |       | 192.168.1.2<br>VM                             |
|----------------------------|-------|-----------------------------------------------|
|                            | VXLAN |                                               |
| VLAN 10 Physical network A |       | Physical network B VLAN 100<br>172.168.1.0/24 |



#### **vm**ware

Copyright © 2012 VMware Inc. All rights reserved.

# **Questions?**

