
Watch Memory System on Real Systems
by Hardware/Software Hybrid Methods

Yungang Bao

Joint work with

Mingyu Chen, Licheng Chen, Zehan Cui, Yongbing

Huang, Lei Liu, Yuan Ruan and Dan Tang

Princeton University

Institute of Computing Technology (ICT),

Chinese Academy of Sciences

Memory System: Past and Present

• Memory is the key component of computer
systems, drawing lots of research efforts

• Before 1990, memory capacity was a big issue
for whole system performance

• In the 1990s, memory wall was raised due to
the disparity of CPU and memory speed

• We are in the multicore era where scalability,
power and QoS are the new challenges

Memory System Research Process
• Trace-driven Approaches

Memory Trace Generator
Real Systems/Simulators/…

Memory Trace Collector

Trace Analysis/

Trace-Driven Simulation

 Thermal Modeling and

Management of DRAM Memory

Systems (ISCA’07)

 M5  Trace  MEMSpot

 Memory Prefetching Using

Adaptive Stream Detection

(Micro’06)

 Power5+ Simulator  Trace

  MemSim

Software simulation is still the dominated effective method

for collecting memory trace.

However,
Voice of researchers

• We collected memory reference traces from a detailed full-system simulator. …
(Each simulation still took 1-2 weeks to complete.) …

-- Disaggregated Memory for Expansion and Sharing in Blade Servers, ISCA’09

• We used COTSon, a relatively fast simulator [2]. However, even with COTSon,
tracing at this level is slow, which limits the amount of simulated execution we
can achieve. For example, one of our runs, covering 213 traced seconds, took
10 days. …

-- Operating System Support for NVM+DRAM Hybrid Main Memory, HotOS’09

• We need to evaluate the DRAM DTM schemes for at least thousands of
seconds. Direct cycle-accurate simulation for studying DRAM thermal
management is almost infeasible at this time length .…

-- Thermal Modeling and Management of DRAM Memory Systems, ISCA’07

An Ideal Memory Trace Collector

• Richard Uhlig (Intel), Trevor Mudge (UMich).

 Trace-driven memory simulation: A Survey. ACM Computing
Surveys, Jun., 1997

• An Ideal Memory Trace Collector should be

– Fast (without waiting weeks)

– Complete (App, OS, Lib, etc.)

– Detail (high-level information, e.g., Virt, Pid)

– Undistorted (No Time Dilation or Memory Dilation)

– Others

• Portability, Inexpensive, Easy to operate

Hardware-based Method

• Collect memory traces of whole systems, but most have no
idea of high-level information

• Allow programs to run at native speed, but difficult to deal
with huge memory trace

• Some old tools (20 years ago) can get high-level information,
but with slow memory speed and poor portability.

Intel’s ACE@FPGA’06

IBM’s MemorIES@ASPLOS’00

 HMTT: A Hardware/Software
Hybrid Memory Trace Tool

Fast

Complete

Detailed

Undistorted

Portable

Inexpensive

Studying Memory System
on Real Systems by HMTT

• Principle/Design of HMTT (Sigmetrics’08)

• Derivatives Tools of HMTT

– Object-Relative Memory Profiling (ISPASS’12)

– Low-overhead Lock Profiling (PACT’12)

– Fine-Granularity Memory Power Profiling (PMP’11)

• Leveraging HMTT to Optimize Memory System

– DMA Characteristics and DMA Cache (HPCA’10)

– Page-Coloring based Bank-level Partition (PACT’12)

Agenda

• Principle/Design of HMTT

• Derivatives Tools of HMTT

– Object-Relative Memory Profiling

• Leveraging HMTT to Optimize Memory System

– Page-Coloring based Bank-level Partition

• Conclusion

An Overview of HMTT

Object Access

Pattern

Matrix (VA: 0x1f05000) 0x1f05000

0x1f06000

0x1f07000

……

0x1f15000

0x1f16000

0x1f17000

……

0x1f25000

0x1f26000

……

Virtual

Address

Trace
0x398f24a

0x398f24b

0x398f24c

……

0x1af4aa

0x1af4a6

0x1af4a8

……

0x38d2cfc

0x38d2cfd

……

Physical

Address

Trace

Hardware Component
• Plugged in memory DIMM slots

– Snooping signals on memory bus

• Support DDR3-800 DRAM compatible
• Uses PCI-e to transfer memory trace to remote machines

DIMM plugged on

the other side
PCIE Cable

Connector

Memory Trace:

<time_stamp, r/w, phy_addr>

Advantages:

• Platform independent

• Negligible overhead

• Full-system memory

traces, including OS,

page table walks

• Support storing large-

scale trace

Software Challenges (1)
• Physical address  High-Level Event

• How to translate physical address to virtual
address of a specific process?

• Modify OS kernel to

obtain page table

• Lookup a phy_addr

in the dumped page

table

• Generate virtual trace
of each process

Synchronization Challenge (2)

• How to synchronize hardware and software
when a page table update occurs in OS kernel?

• High-Level Event
Encoding Mechanism
(HLE2M)

1. Reserve memory space

2. Map HL-events to the
space

3. Collect the accesses to
the space

4. Translate the accesses
into the events offline

Detail: Page Table Update Event

• Upon each physical page

allocation/Free in kernel

• Trigger annotated codes

in OS VM module

• Update dumped page

table

• Send a sync_tag to

hardware by issuing a

specific access to the red

address

More High-Level Information

• CPU/DMA
Access

• Lock
Profiling

High-Level Event Encoding Mechanism (HLE2M)

enables more useful scenarios.

HMTT Prototype

Agenda

• Principle/Design of HMTT

• Derivatives Tools of HMTT

– Object-Relative Memory Profiling

• Leveraging HMTT to Optimize Memory System

– Page-Coloring based Bank-level Partition

• Conclusion

Memory Profiling

• Memory profiling is to collect memory behavior
information during the execution of programs.

• Profiling can be performed for
– different hardware components
– different software levels

TLB/Cache/DRAM
Objects (Array, List etc.) Function

Application
Whole System

Object Memory Profiling

• Object refers to a group of
data stored as a unit [Wu’04]

– Distinguish regular patterns
from mixed and irregular traces

• Valuable for optimization

– Memory trace compression

– Data layout

– Object-level prefetching

– Cache partition [Soft-OLP, PACT 2009]

Whole

System

Traces

Application

Traces

Object

Trace

Irregular

Regular

Current Profiling Approaches
• Existing approaches

– Compiler-driven: re-compile/re-link, source code
– Instrumentation: heavy overhead
– Simulation: accuracy problem, slow
– Performance Counter: lack of detailed traces

• We enhance HMTT to support object memory
profiling
– Accurate: real application & real system
– Lightweight
– Collect page table walks at object-level

Translation Challenge

• How to translate virtual address to objects?

matrix = malloc(0x1000)

Object:

matrix

Virtual

Address

Space

matrix = mymalloc(0x1000)

Object-VA

Mapping Table

• The role of malloc()

is to map VA to

object

• Use dynamic library

overwrite to replace

malloc()

Put them all together

0x1f05000

0x1f06000

0x1f07000

……

0x1f15000

0x1f16000

0x1f17000

……

0x1f25000

0x1f26000

……

Virtual

Address

Trace

Object Access

Pattern

Matrix (VA: 0x1f05000) 0x398f24a

0x398f24b

0x398f24c

……

0x1af4aa

0x1af4a6

0x1af4a8

……

0x38d2cfc

0x38d2cfd

……

Physical

Address

Trace

Object-VA

Mapping Table

Dumped

Page Table sync_tag

sync_tag

page walk

page walk

Use page table to distinguish three types of memory access
• Sync_tag  update page table

• Access page table itself  page table walk due to TLB miss

• Other memory access  virtual address

Evaluation Methodology

Processor
Intel Xeon E5504, 2.0GHz,

2 Sockets, 4 Cores per Socket (8 core in total)

Private Cache
L1

D-Cache: 32KB, 8-way, 64Byte/line

 I-Cache: 32KB, 4-way, 64Byte/Line

L2 256KB, 8-way, 64Byte/line

Shared Cache L3 4MB, 16-way, 64Byte/line

TLB

(private)

DTLB0
64 entries for 4-KByte pages

32 entries for huge pages (2MByte)

TLB1 512 entries for 4-KByte pages

Memory

DDR3-800 RDIMM, dual-rank, plugged into Socket 0, 4GB

0.25GB reserved for HMTT configuration and buffer

3.75GB system available

Operating System CentOS 5.3, Linux kernel 2.6.32.18

Benchmarks
Multithreaded PARSEC 2.1

A custom hybrid MPI/pthread implemented BFS of Graph500-1.2

Validation
• For SpMV benchmark (CSR) :

 y = ax * xhost

Our system is able to distinguish regular access pattern from irregular

pattern

• Micro-benchmark:

—The error is less than 2%

Overhead

• Two main overhead:

– Dumping page table traces: + dump_pt

– Dumping object-VA mapping: + dump_obj

• Monitoring objects >= 4KB: result in most memory references

<1%

<2%

Case Study: BFS (Breadth-First Search)

• column object : about 71% of page walks  key object

• Optimization: use huge page for column object

– Speedup: about 12% for 8-thread, 8% for 128-thread

8.18%

A Visual Demo of Object Profiling

Agenda

• Principle/Design of HMTT

• Derivatives Tools of HMTT

– Object-Relative Memory Profiling

• Leveraging HMTT to Optimize Memory System

– Page-Coloring based Bank-level Partition

• Conclusion

Multicore-Posed Challenges

• DRAM system is a shared resource in modern
multicore machines.

• The shared DRAM system becomes the major
bottleneck of multicore scalability due to two
reasons:

– Interference

– Unfairness

DRAM Organization

Core-0 Core-N

Shared Last Level Cache

Memory Controller

……

Bank-0 Bank-n

Row buffer

• Interference
– Row buffer Miss

– 65% (16cores)

• Unfairness
– Favor sequential

pattern

– 7.7X vs 1.1X

Current Solutions

• Most previous studies focus on memory
scheduling algorithms.

• Few researchers realize the phenomenon that all
memory banks are shared by all CPU cores
– Interleaved address mapping policy to explore bank-

level parallelism

– Make consecutive memory space across multiple
banks

The inter-thread bank-level conflicts can be fully

eliminated by exclusively mapping a thread’s

data to specific banks

The Impact of Bank Amount

• Partition bank would reduce the available bank
amount for one thread.

• Will this influence performance?

The necessary amount of banks one program requires is limited

Page-Coloring Partitioning Approach

• Page coloring technique has been proposed to
partition cache.

00

01

10

11

Physical

address

Four-Way Cache

Page Offset Frame No.

Cache Offset Index Tag

DRAM

Banks

Can we

partition

banks via

page coloring?

Address Mapping Challenges

• The idea is simple, but in practice the mapping
from physical address to DRAM banks is not
fixed.

• Challenge: How to figure out memory
mapping information to extract the bank bits?

Discover Bank Bits (1)

• We use HMTT to measure the latency of
different access patterns

• Two Facts:

– the latency of row buffer miss is much longer than
the latency of row buffer hits

– The latency of row buffer miss within a bank is still
longer than concurrent accesses to two different
banks

0

1

A0

A1 >

> 0

1

A0

A1

0

1

Discover Bank Bits (2)
Algorithms


Long

Latency
R= {row bits}

Other

Cases


Low
Latency X= {rest bits}

0

1

A0

A1

O = {all bits}

0

1

A0

A1

X= {rest bits}

R= {row bits}

0

1


Long

Latency

Row

Buffer

Miss

Same

Bank
C= {col bits}


Low

Latency B= {bank bits}
Different

Banks

Bank-level Partition Mechanism
(BPM)

• Implementation: adopt page-coloring base BPM in
Linux kernel 2.6.32 by modify its buddy system.

– group free pages into 32 colors.

– Adjust the page allocation algorithm.

• Experiments

– 4-core/8-thread Intel Core i7 CPU

– 8GB DRAM, 64 banks, 32 color

– SPECCPU 2006 (Multi-Program), PARSEC (Multi-Thread)

Experimental Results

• System throughput : 4.7% (up to 8.6%)

• Maximum slowdown: 4.5% (up to 15.8%)

• Memory Power : 5.2% 

Conclusion
• We design and implement a hardware/software

hybrid memory trace tool (HMTT)
– High-Level Event Encoding Mechanism (HLE2M)

• We also design some tools based on HMTT
– Object-Relative Profiling

• The HMTT tool chains allow us to study memory
system on real systems

• We have provided free memory traces (>1TB) to
many research groups

Thanks

Q&A?

