
Tutorial
Setup

Reference
http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/MininetGettingStarted for
more thorough Mininet walkthrough if desired

Necessary Downloads
1. Download VM at

http://www.cs.princeton.edu/courses/archive/fall10/cos561/assignments/COS561Tutorial.zip
2. Download VirtualBox at http://www.virtualbox.org/wiki/Downloads (VMWare

will work too but VirtualBox is free)

Installing VM image (In VirtualBox)
The image we provide already has Mininet and Nox installed on it so we need to load it
into VirtualBox.

1. Open VirtualBox.
2. Click New then Next
3. Enter desired name for VM (Ex: COS561Tutorial). OS: Linux. Version: Ubuntu.

Click Next
4. Choose desired memory (Default 512 MB is fine). Click Next
5. Check Use existing hard disk. The folder button will open a pop-up. Click add

and locate OpenFlowTutorial.vmdk. Click Open. Click Select.
6. Click Continue
7. You have installed your VM image!

Configuring VirtualBox for SSH
http://www.linuxjournal.com/content/tech-tip-port-forwarding-virtualbox-vboxmanage
The VM image we provided is only command line. We will need to SSH and use X
Forwarding in order to load certain graphic application. There are subtle differences in
this step between Mac/Linux and Windows, please follow the specific instructions for
your machine.

Mac/Linux Instructions
Enable VM for SSH (In VirtualBox)

1. Select your VM and click Settings.
2. Go to the Network tab and click on Advanced
3. Check Enable Network Adapter. Attached to: NAT. Adapter type: PCnet-FAST

III (Am79C973). Check Cable Connected.

Configure VM for SSH (through Terminal)
1. Open up Terminal and find the Virtualbox Application directory where

VirtualBox is installed (the VM image should not be running)
2. Enter the following commands substituting “VM Name Here” with your VM

name from above (Ex: COS561Tutorial)

$ VBoxManage setextradata "VM Name Here" \
 "VBoxInternal/Devices/pcnet/0/LUN#0/Config/guestssh/Protocol" TCP

$ VBoxManage setextradata "VM Name Here" \
 "VBoxInternal/Devices/pcnet/0/LUN#0/Config/guestssh/GuestPort" 22

$ VBoxManage setextradata "VM Name Here” \
 "VBoxInternal/Devices/pcnet/0/LUN#0/Config/guestssh/HostPort" 2222

Starting SSH Session
1. Open VirtualBox
2. Start the VM that we created (Ex: COS561Tutorial) and let it proceed until it

asks for username. We will be using SSH to login to the VM. Login with
usersname/pw: mininet/mininet

3. In VM image, sudo dhclient eth1 (This is to “seed” the ip address. It’s a strange
issue that we found with Macs)

4. Open Terminal and SSH to VM image
ssh -Y -l mininet -p 2222 localhost

If everything has proceeded correctly, you should see a couple folders (Ex: mininet,
openflow, noxcore etc.) indicating that you have logged into the VM session. We can
now proceed with developing inside the VM.

Windows Instructions
1. Select your VM and click Settings.
2. Go to the Network tab and click on Advanced
3. Check Enable Network Adapter. Attached to: NAT. Adapter type: PCnet-FAST

III (Am79C973). Check Cable Connected.

Configuring VM for SSH (through CMD)
Open up command prompt and find your Virtualbox application directory where
it VirtualBox is installed. (Be sure that the VM image is not running)

3. Enter the following commands substituting “VM Name Here” with your VM
name from above (Ex: COS561Tutorial)

$ VBoxManage setextradata "VM Name Here" \
 "VBoxInternal/Devices/pcnet/0/LUN#0/Config/guestssh/Protocol" TCP

$ VBoxManage setextradata "VM Name Here" \
 "VBoxInternal/Devices/pcnet/0/LUN#0/Config/guestssh/GuestPort" 22

$ VBoxManage setextradata "VM Name Here” \
 "VBoxInternal/Devices/pcnet/0/LUN#0/Config/guestssh/HostPort" 2222

Enable X-Forwarding (In SSH application)
We will be using SSH to connect to the VM image when it is running

1. Choose your favorite SSH client and make sure that X Forwarding is enabled

2. We also need an application for X Forwarding so download an X Forwarding
client (Ex: XMing, X-Win11, etc)

Starting Session
1. Open VirtualBox
2. Start the VM that we created (Ex: COS561Tutorial) and let it proceed until it

asks for username. We will be using SSH to login to the VM. Login with
usersname/pw: mininet/mininet

3. IMPORTANT: Once logged in, create a dummy file. Take a snapshot of the
image (Machine  Take Snapshot). Shut down the VM image and then start it up
again. Check that the dummy file still exists. This will ensure that your
modifications are remembered.

4. SSH to VM Image. Open some SSH client (Putty, Secure Shell etc.) Login with
hostname: localhost, username: mininet, password: mininet, port: 2222

If everything has proceeded correctly, you should see a couple folders (Ex: mininet,
openflow, noxcore etc.) indicating that you have logged into the VM session. We can
now proceed with developing inside the VM.

Developing a Network Topology
All development takes places through a SSH session to the VM. Thus, you will need
your X Forwarding Client running in order to have any graphical interaction through this
session. (For Windows, check that your X Forwarding application is running. For
OS/Linux ensure that you have the –Y option when you ssh to the VM image)

Reference
http://yuba.stanford.edu/cs244wiki/index.php/Overview

Wireshark Analyzer
Wireshark is a great tool to help you analyze traffic flowing through nodes in the network

1. We will use wireshark to analyze network behavior with the command:
sudo wireshark &

This should open a graphical pop-up window (If there is an error saying a window
cannot be created, your X Forwarding client may not be running)

2. In the wireshark filter box, enter of and then click Apply
3. Click Capture, then Interfaces, then Start on the loopback interface (lo). All

packets flowing through the controller will show up here including Flow
Modifications. If you wish to capture specific interfaces such as specifics hosts,
simply click Capture and then Interfaces and then select the desired host.

4. We will now return to the SSH session looking at this wireshark application to
view traffic

Exploring the Default Topology (2 hosts, 1 switch, 1 controller)
1. We will first start mininet; which, when no specific topology is given, will create

the default topology of 2 hosts, 1 switch, and 1 controller

sudo mn
2. We can check and verify that the topology is correct by trying out the commands:

help, nodes, net, dump
3. If we want to issue a specific command for a host, switch, or controller, we

simply place the node’s name in front of the command. (Ex: h2 ifconfig –a)
ifconfig, ps, etc.

4. Pinging combined with wireshark is very useful in diagnosing controller behavior.
h2 ping –c 1 h3
Mininet will replace h3 with its IP address. If you view the wireshark output, you
should be able to view the traffic in the network as a result of this ping.
A convenient built-in command is pingall

5. exit will end the mininet session

Custom Topologies
There are many custom examples that can be found in ~/mininet/examples/
They use a lot of functions that can be found in ~/mininet/mininet/net.py
Specifically, the most relevant for this assignment will be emptynet.py and scratchnet.py.
Note: Many of the custom topologies use the default NOX controller. If we want to run
our custom NOX controller, then we need to change one line:

net = Mininet(controller=Controller)
TO

net = Mininet(controller=lambda name: NOX(name, ‘COS561Test’))

Once this is done, one can run the topology sudo python [xyz].py in mininet and then we
can interact with it just like we did with the default topology above.

Developing a Custom Controller

Running NOX Controller
We have set up a NOX Controller for you to build.
Many of the sample controller code can be found in ~/noxcore/src/nox/ directory.
The NOX Controller we have set up can be found at
~/noxcore/src/nox/COS561Tutorial/COS561Test/COS561Test.py
Once you are done developing your python controller and wish to test it, simply save the
file and then enter the following command in the shell:

sudo mn --controller=nox_cos561
nox_cos561 is a pointer to our NOX Controller, COS561Test, that we have installed to
help mininet specify which NOX controller to install. (!* If you get warning regarding
Dissector bug, you should issue command sudo mn –c to clean up *!)

Example Controllers
At this point, we need to program our controller in Python. It would simply take too long
to thoroughly learn Python so we will simply learn “on the go” through examples. Basic

controllers will only really require basic data structures for which the API can easily be
found online here http://docs.python.org/tutorial/datastructures.html.

Basic NOX Controller
~/noxcore/src/nox/coreapps/examples/pyloop.py
This is a very basic shell of a controller that does not perform any forwarding at this
point. What it does is illustrate how one would be able to install desired event handlers. If
we wish to have the controller react to packet_in events, then we would install an event
handle in the install function.

Hub NOX Controller
~/noxcore/src/nox/coreapps/tutorial/pytutorial.py
This controller implements a simple hub. The first item to notice is the install function.
This controller has installed an event handler for packet_in. Whenever a packet arrives at
a switch that does not match any rules, it is sent to the controller. Currently, packets that
arrive at the controller are forwarded to everyone except the port from which it came
from. (Note: This is also the same controller that is currently in COS561Test.py.)

Simple Learning NOX Controller
We now leave it for you to implement the learning switch by building off of the hub from
above. The algorithm is very simple:

1. We look at the incoming port number and MAC source of the incoming
packet and store it in a data structure (We currently use the Python map). If a
packet arrives with destination to this MAC, then we know what port to
forward this packet to.

2. If we have an entry in our data structure for the MAC destination of the
packet, then we know exactly which port to forward it.

3. Otherwise, we will flood this packet on all ports except for the port from
which the packet came in.

Hints
There is not a great nox API around so there are several files that we will need to look
into in order to find the appropriate function declarations that we will need to use.
Included in this list of hints are other Python functions that you may find useful. This list
should cover all the basic functionality that will be necessary to complete the assignment.

1. References
There are several useful files to take a look at since NOX is not very well documented
~/noxcore/src/nox/lib/core.py

Contains most of the higher level functions (sending packets, installing flows, etc)

~/noxcore/src/nox/packet/packet_utils.py
~/noxcore/src/nox/packet/ethernet.py
~/noxcore/src/nox/packet/ipv4.py
~/noxcore/src/nox/packet/packet_base.py

Contains some convenient functions for packet header analysis/parsing

~/noxcore/src/include/openflow/openflow/openflow.h
Contains many of the openflow variables that you may need to use

~/mininet/examples/
~/mininet/mininet/

Examples for custom topologies and their function definitions

2. Event Registration
There are several event handlers that are important:
register_for_packet_in(handler) – no matching flow rules come to controller
register_for_datapath_leave(handler) – switch down
register_for_datapath_join(handler) – switch join
post_callback(handler) – custom event handler

3. Python Dictionary
The built-in Dictionary structure may be useful for keeping track of learned MACs.
To init: self.myDictionary = {}
To insert 3 item tuple with key i: self.myDictionary[i] = (x, y, z)
Exists entry with key i: self.myDictionary.has_key(i)
Get 2nd item in tuple with key i: self.myDictionary[i][2]

There is much more you can accomplish with Python by looking at simple examples
online.

4. Python Functions:
Python functions are pretty straightforward (Notice how there is no type casting and
function declaration ends with a colon):

def myFunction(arg1, arg2, arg3):

5. Packet Analysis
You will notice that in your learn_and_forward function, we pass arguments packet
and packet.arr. packet contains parsed header information that is easy to grab using
functions found in the packet library. packet.arr is the actual buffer data that needs to
be modified if you wish to send this buffer.

Hint: Take a look at the packet library posted above to find useful address functions
such as mac_to_int, tostring(), ipstr_to_int etc.

6. Printing Controller Information
In contrast to using the typical print statements, it is much more useful to print to a
log. You will find it useful to declare the following at the top of your file:

logger = logging.getLogger(‘nox.COS561Tutorial.COS561Test.COS561Test’)
 logger.info(‘XYZ’)

To view the output, you simply take a look at the controller log file that can be found
at /tmp/c0.log

7. Installing Dataflow Rules
Installing dataflow rules is pretty straightforward if you understand how openflow
works. First, we specify a flow rule then the action associated with it.

flow = extract_flow(packet)
flow[core.IN_PORT] = import
actions = [[openflow.OFPAT_OUTPUT, [0,prt[0]]]]
self.install_datapath_flow(dpid, flow, CACHE_TIMEOUT,

openflow.OFP_FLOWPERMANT, actions, bufid,
openflow.OFP_DEFAULT_PRIORITY, import, buf)

One can perform more actions by simply adding to the list (Ex: [[openflow.XYZ,
args], [openflow.WXY, args]]). Consult with core.py for more details.

8. Sending Packet
Sending a single packet is a good starting point before attempting to install dataflow
rules. Try to see if you can forward on a specific port once you have learned the
MAC.

self.send_openflow(dpid, bufid, buf, ?, inport)

9. Switch Identifier
The switch ID (dpid) will be its MAC address if specified in the Mininet topology.

(Ex: If mac = ’00:01:02:03:0401’, then its dpid will be 0x000102030401)

