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The work toward attaining "artificial intelligence’’ is the center of
considerable computer research, design, and application. The
field is in its starting transient, characterized by many varied and
independent efforts. Marvin Minsky has been requested to draw
this work together into a coherent summary, supplement it with
appropriate explanatory or theoretical noncomputer information, 
and introduce his assessment of the state of the art. This paper
emphasizes the class of activities in which a general-purpose
computer, complete with a library of basic programs, is further
programmed to perform operations leading to ever higher-level
information processing functions such as learning and problem
solving. This informative article will be of real interest to both the 
general Proceedings reader and the computer specialist. -- The
Guest Editor. 
 
Summary: The problems of heuristic programming—of making
computers solve really difficult problems—are divided into five
main areas: Search, Pattern-Recognition, Learning, Planning, and
Induction. Wherever appropriate, the discussion is supported by
extensive citation of the literature and by descriptions of a few of
the most successful heuristic (problem-solving) programs
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constructed to date.
 
The adjective "heuristic," as used here and widely in the literature,
means related to improving problem-solving performance; as a
noun it is also used in regard to any method or trick used to
improve the efficiency of a problem-solving system. A "heuristic
program," to be considered successful, must work well on a
variety of problems, and may often be excused if it fails on some. 
We often find it worthwhile to introduce a heuristic method, which
happens to cause occasional failures, if there is an over-all
improvement in performance. But imperfect methods are not
necessarily heuristic, nor vice versa. Hence "heuristic" should not
be regarded as opposite to "foolproof"; this has caused some
confusion in the literature.
 

INTRODUCTION
 
A VISITOR to our planet might be puzzled about the role of
computers in our technology. On the one hand, he would read
and hear all about wonderful "mechanical brains" baffling their
creators with prodigious intellectual performance. And he (or it) 
would be warned that these machines must be restrained, lest
they overwhelm us by might, persuasion, or even by the
revelation of truths too terrible to be borne. On the other hand, our
visitor would find the machines being denounced on all sides for
their slavish obedience, unimaginative literal interpretations, and
incapacity for innovation or initiative; in short, for their inhuman
dullness. 
 
Our visitor might remain puzzled if he set out to find, and judge for
himself, these monsters. For he would find only a few machines
mostly general-purpose computers), programmed for the moment
to behave according to some specification) doing things that might
claim any real intellectual status. Some would be proving 
mathematical theorems of rather undistinguished character. A few
machines might be playing certain games, occasionally defeating
their designers. Some might be distinguishing between
hand-printed letters. Is this enough to justify so much interest, let
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alone deep concern? I believe that it is; that we are on the
threshold of an era that will be strongly influenced, and quite 
possibly dominated, by intelligent problem-solving machines. But
our purpose is not to guess about what the future may bring; it is
only to try to describe and explain what seem now to be our first
steps toward the construction of "artificial intelligence."
 
Along with the development of general-purpose computers, the
past few years have seen an increase in effort toward the
discovery and mechanization of problem-solving processes. Quite 
a number of papers have appeared describing theories or actual
computer programs concerned with game-playing,
theorem-proving, pattern-recognition, and other domains which
would seem to require some intelligence. The literature does not
include any general discussion of the outstanding problems of this 
field. 
 
In this article, an attempt will be made to separate out, analyze,
and find the relations between some of these problems. Analysis
will be supported with enough examples from the literature to
serve the introductory function of a review article, but there
remains much relevant work not described here. This paper is 
highly compressed, and therefore, cannot begin to discuss all
these matters in the available space.
 
There is, of course, no generally accepted theory of "intelligence";
the analysis is our own and may be controversial. We regret that
we cannot give full personal acknowledgments here—suffice it to
say that we have discussed these matters with almost every one
of the cited authors.
 
It is convenient to divide the problems into five main areas:
Search, Pattern-Recognition Learning, Planning, and Induction
these comprise the main divisions of the paper. Let us summarize
the entire argument very briefly: 
 
A computer can do, in a sense, only what it is told to do. But even
when we do not know exactly how to solve a certain problem, we
may program a machine to Search through some large space of
solution attempts. Unfortunately, when we write a straightforward
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program for such a search, we usually find the resulting process 
to be enormously inefficient. With Pattern- Recognition
techniques, efficiency can be greatly improved by restricting the
machine to use its methods only on the kind of attempts for which
they are appropriate. And with Learning, efficiency is further
improved by directing Search in accord with earlier experiences. 
By actually analyzing the situation, using what we call Planning
methods, the machine may obtain a fundamental improvement by
replacing the originally given Search by a much smaller, more
appropriate exploration. Finally, in the section on Induction, we
consider some rather more global concepts of how one might
obtain intelligent machine behavior.

I. THE PROBLEM OF SEARCH
Summary—If, for a given problem, we have a means for checking
a proposed solution, then we can solve the problem by testing all
possible answers. But this always takes much too long to be of
practical interest. Any device that can reduce this search may be
of value. If we can detect relative improvement, then
“hill-climbing” (Section l-B) may be feasible, but its use
requires some structural knowledge of the search space. And
unless this structure meets certain conditions, hill-climbing may do
more harm than good.
 
Note 1: The adjective "heuristic," as used here and widely in the
literature, means related to improving problem-solving
performance; as a noun it is also used in regard to any method or
trick used to improve the efficiency of a problem-solving system. A
"heuristic program," to be considered successful, must work well
on a variety of problems, and may often be excused if it fails on
some. We often find it worthwhile to introduce a heuristic method,
which happens to cause occasional failures, if there is an over-all
improvement in performance. But imperfect methods are not 
necessarily heuristic, nor vice versa. Hence "heuristic" should not
be regarded as opposite to "foolproof"; this has caused some
confusion in the literature.
 
When we talk of problem solving in what follows, we will usually
suppose that all the problems to be solved are initially
well-defined. [1] By this we mean that with each problem we are
given some systematic way to decide when a proposed solution is



5

acceptable. Most of the experimental work discussed here is 
concerned with such well-defined problems as are met in theorem
proving or in games with precise rules for play and scoring.
 
In one sense, all such problems are trivial. For if there exists a
solution to such a problem, that solution can be found eventually
by any blind exhaustive process which searches through all
possibilities. And it is usually not difficult to mechanize or program
such a search. 
 
But for any problem worthy of the name, the search through all
possibilities will be too inefficient for practical use. And on the
other hand, systems like chess, or nontrivial parts of mathematics,
are too complicated for complete analysis. Without complete
analysis, there must always remain some core of search, or “trial
and error.” So we need to find techniques through which the
results of incomplete analysis can be used to make the search
more efficient. The necessity for this is simply overwhelming. A
search of all the paths through the game of checkers involves
some 10**40 move choices [2]—in chess, some 10**120 [3]. If we
organized all the particles in our galaxy into some kind of parallel
computer operating at the frequency of hard cosmic rays, the
latter computation would still take impossibly long; we cannot
expect improvements in “hardware” alone to solve all our
problems. Certainly, we must use whatever we know in advance
to guide the trial generator. And we must also be able to make
use of results obtained along the way.
 
Notes: McCarthy [1] has discussed the enumeration problem from
a recursive-function-theory point of view. This incomplete but
suggestive paper proposes, among other things, that "the
enumeration of partial recursive functions should give an early
place to compositions of functions that have already appeared.”
I regard this as an important notion, especially in the light of
Shannon’s results [4] on two-terminal switching circuits—that the
"average" n-variable switching function requires about 2**n
contacts. This disaster does not usually strike when we construct
"interesting" large machines, presumably because they are based
on composition of functions already found useful. In [5] and
especially in [6] Ashby has an excellent discussion of the search
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problem. (However, I am not convinced of the usefulness of his
notion of "ultrastability," which seems to be little more than the
property of a machine to search until something stops it.
 

A. Relative Improvement, Hill-Climbing, and Heuristic
Connections

 
A problem can hardly come to interest us if we have no
background of information about it. We usually have some basis,
however flimsy, for detecting improvement; some trials will be 
judged more successful than others. Suppose, for example, that
we have a comparator which selects as the better, one from any
pair of trial outcomes. Now the comparator cannot, alone, serve to
make a problem well-defined. No goal is defined. But if the
comparator-defined relation between trials is “transitive” (i.e., if 
A dominates B and B dominates C implies that A dominates C), 
then we can at least define “progress,” and ask our machine,
given a time limit, to do the best it can.
 
But it is essential to observe that a comparator by itself, however
shrewd, cannot alone give any improvement over exhaustive
search. The comparator gives us information about partial
success, to be sure. But we need also some way of using this
information to direct the pattern of search in promising directions;
to select new trial points which are in some sense “like,” or
“similar to,” or “in the same direction as” those which have
given the best previous results. To do this we need some
additional structure on the search space. This structure need not
bear much resemblance to the ordinary spatial notion of direction,
or that of distance, but it must somehow tie together points which
are heuristically related.
 
We will call such a structure a heuristic connection. We introduce
this term for informal use only—which is why our definition is itself
so informal. But we need it. Many publications have been marred
by the misuse, for this purpose, of precise mathematical terms,
e.g., metric and topological. The term “connection,” with its
variety of dictionary meanings, seems just the word to designate a
relation without commitment as to the exact nature of the relation.
An important and simple kind of heuristic connection is that
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defined when a space has coordinates (or parameters) and there
is also defined a numerical “success function” E which is a 
reasonably smooth function of the coordinates. Here we can use
local optimization or hill-climbing methods.
 

B. Hill-Climbing
 
Suppose that we are given a black-box machine with inputs x1, . . 
. xn and an output E(x1, … xn). We wish to maximize E by 
adjusting the input values. But we are not given any mathematical
description of the function E; hence, we cannot use differentiation
or related methods. The obvious approach is to explore locally
about a point, finding the direction of steepest ascent. One moves
a certain distance in that direction and repeats the process until
improvement ceases. If the hill is smooth, this may be done,
approximately, by estimating the gradient component dE/dxi
separately for each coordinate. There are more sophisticated
approaches—one may use noise added to each variable, and
correlate the output with each input (see below)—but this is the
general idea. It is a fundamental technique, and we see it always
in the background of far more complex systems. Heuristically, its
great virtue is this: the sampling effort (for determining the
direction of the gradient) grows, in a sense, only linearly with the
number of parameters. So if we can solve, by such a method, a
certain kind of problem involving many parameters, then the
addition of more parameters of the same kind ought not to cause
an inordinate increase in difficulty. We are particularly interested
in problem-solving methods that can be so extended to more
problems that are difficult. Alas, most interesting systems, which
involve combinational operations usually, grow exponentially more
difficult as we add variables.
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Multiple simultaneous optimizers search for a (local) maximum
value of some function E (x1, … xn) of several parameters. 

Each unit Ui independently "jitters" its parameter x, perhaps

randomly, by adding a variation di(t) to a current mean value mi.

The changes in the quantities xi and E are correlated, and the

result is used to slowly change mi. The filters are to remove DC 

components. This technique, a form of coherent detection,
usually has an advantage over methods dealing separately and
sequentially with each parameter. Cf. the discussion of 
"informative feedback" in Wiener [11], p133ff. A great variety of
hill-climbing systems have been studied under the names of
“adaptive” or “self-optimizing” servomechanisms.

 
C. Troubles with Hill-Climbing

 
Obviously, the gradient-following hill-climber would be trapped if it
should reach a local peak which is not a true or satisfactory
optimum. It must then be forced to try larger steps or changes. It
is often supposed that this false-peak problem is the chief 
obstacle to machine learning by this method. This certainly can be
troublesome. But for really difficult problems, it seems to us that
usually the more fundamental problem lies in finding any
significant peak at all. Unfortunately the known E functions for
difficult problems often exhibit what we have called [7] the “Mesa
Phenomenon” in which a small change in a parameter usually
leads to either no change in performance or to a large change in
performance. The space is thus composed primarily of flat regions
or “mesas.” Any tendency of the trial generator to make small
steps then results in much aimless wandering without
compensating information gains. A profitable search in such a
space requires steps so large that hill-climbing is essentially ruled
out. The problem-solver must find other methods; hill-climbing
might still be feasible with a different heuristic connection.
 
Certainly, in human intellectual behavior we rarely solve a tricky
problem by a steady climb toward success. I doubt that any one
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simple mechanism, e.g., hill-climbing, will provide the means to
build an efficient and general problem-solving machine. Probably,
an intelligent machine will require a variety of different
mechanisms. These will be arranged in hierarchies, and in even
more complex, perhaps recursive structures. And perhaps what
amounts to straightforward hill-climbing on one level may
sometimes appear (on a lower level) as the sudden jumps of
“insight.”
 

II. THE PROBLEM OF PATTERN RECOGNITION
 

Summary—In order not to try all possibilities, a resourceful
machine must classify problem situations into categories
associated with the domains of effectiveness of the machine’s
different methods. These pattern-recognition methods must
extract the heuristically significant features of the objects in
question. The simplest methods simply match the objects
against standards or prototypes. More powerful “property-list”
methods subject each object to a sequence of tests, each
detecting some property of heuristic importance. These
properties have to be invariant under commonly encountered
forms of distortion. Two important problems arise
here—inventing new useful properties, and combining many
properties to form a recognition system. For complex problems,
such methods will have to be augmented by facilities for
subdividing complex objects and describing the complex
relations between their parts.

 
Any powerful heuristic program is bound to contain a variety of
different methods and techniques. At each step of the
problem-solving process, the machine will have to decide what
aspect of the problem to work on, and then which method to use. 
A choice must be made, for we usually cannot afford to try all the
possibilities.
 
In order to deal with a goal or a problem, that is, to choose an
appropriate method, we have to recognize what kind of thing it is.
Thus, the need to choose among actions compels us to provide
the machine with classification techniques, or means of evolving
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them. It is of overwhelming importance for the machine to have
classification techniques, which are realistic. But “realistic- can
be defined only with respect to the environments to be
encountered by the machine, and with respect to the methods
available to it. Distinctions which cannot be exploited are not
worth recognizing. And methods are usually worthless without
classification schemes that can help decide when they are
applicable.
 

A. Teleological Requirements of Classification
 
The useful classifications are those which match the goals and
methods of the machine. The objects grouped together in the
classifications should have something of heuristic value in
common; they should be “similar” in a useful sense; they
should depend on relevant or essential features. We should not
be surprised, then, to find ourselves using inverse or teleological
expressions to define the classes. We really do want to have a
grip on “the class of objects which can be transformed into a
result of form Y,” that is, the class of objects which will satisfy
some goal. One should be wary of the familiar injunction against
using teleological language in science. While it is true ‘that talking
of goals in some contexts may dispose us towards certain kinds of
animistic explanations, this need not be a bad thing in the field of
problem-solving; it is hard to see how one can solve problems
without thoughts of purposes. The real difficulty with teleological
definitions is technical, not philosophical, and arises when they
have to be used and not just mentioned. One obviously cannot
afford to use for classification a method that actually requires
waiting for some remote outcome, if one needs the classification
precisely for deciding whether to try out that method. So, in
practice, the ideal teleological definitions often have to be
replaced by practical approximations, usually with some risk of
error; that is, the definitions have to be made heuristically 
effective, or economically usable. This is of great importance. (We
can think of “heuristic effectiveness” as contrasted to the
ordinary mathematical notion of “effectiveness” which
distinguishes those definitions which can be realized at all by
machine, regardless of efficiency.)
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B. Patterns and Descriptions
 
It is usually necessary to have ways of assigning names to
symbolic expressions—to the defined classes. The structure of
the names will have a crucial influence on the mental world of the
machine, for it determines what kinds of things can be
conveniently thought about. There are a variety of ways to assign
names. The simplest schemes use what we will call conventional 
(or proper) names; here, arbitrary symbols are assigned to
classes. But we will also want to use complex descriptions or 
computed names; these are constructed for classes by processes 
that depend on the class definitions. To be useful, these should
reflect some of the structure of the things they designate,
abstracted in a manner relevant to the problem area. The notion 
of description merges smoothly into the more complex notion of
model; as we think of it, a model is a sort of active description. It is
a thing whose form reflects some of the structure of the thing
represented, but which also has some of the character of a 
working machine.
 
In Section III, we will consider “learning” systems. The
behavior of those systems can be made to change in reasonable
ways depending on what happened to them in the past. But by
themselves, the simple learning systems are useful only in
recurrent situations; they cannot cope with any significant novelty.
Nontrivial performance is obtained only when learning systems
are supplemented with classification or pattern-recognition
methods of some inductive ability. For the variety of objects
encountered in a nontrivial search is so enormous that we cannot
depend on recurrence, and the mere accumulation of records of
past experience can have only limited value. Pattern-Recognition,
by providing a heuristic connection which links the old to the new,
can make learning broadly useful.
 
What is a “pattern”? We often use this term to mean a set of
objects which can in some (useful) way be treated alike. For each
problem area we must ask, “What patterns would be useful for a
machine working on such problems?”
 
The problems of visual pattern-recognition’ have received much 
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attention in recent years and most of our examples are from this
area.
 

C. Prototype-Derived Patterns
 
The problem of reading printed characters is a clear- cut instance
of a situation in which the classification is based ultimately on a
fixed set of “prototypes”—e.g., the dies from which the type
font was made. The individual marks on the printed page may
show the results of many distortions. Some distortions are rather
systematic—such as changes in size, position, and orientation.
Other distortions have the nature of noise: blurring, grain, low
contrast, etc.
 
If the noise is not too severe, we may be able to manage the
identification by what we call a normalization and
template-matching process. We first remove the differences
related to size and position—that is, we normalize the input figure. 
One may do this, for example, by constructing a similar figure
inscribed in a certain fixed triangle (see below) or one may
transform the figure to obtain a certain fixed center of gravity and
a unit second central moment. 

A simple normalization technique. If an object is expanded
uniformly, without rotation, until it touches all three sides of a
triangle, the resulting figure will be unique, so that pattern
recognition can proceed without concern about relative size and
position.

 
There is an additional problem with rotational equivalence where it
is not easy to avoid all ambiguities. One does not want to equate
“6” and “9”. For that matter, one does not want to equate (0,
o), or (X, x) or the 0’s in xo and xo

—so that there may be 
context-dependency involved. Once normalized, the unknown
figure can be compared with templates for the prototypes and, by 
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means of some measure of matching, choose the best fitting
template. Each “matching criterion” will be sensitive to
particular forms of noise and distortion, and so will each
normalization procedure. The inscribing or boxing method may be
sensitive to small specks, while the moment method will be
especially sensitive to smearing, at least for thin-line figures, etc.
The choice of a matching criterion must depend on the kinds of
noise and transformations commonly encountered. Still, for many
problems we may get acceptable results by using straightforward
correlation methods.
 
When the class of equivalence transformations is very large, e.g., 
when local stretching and distortion are present, there will be
difficulty in finding a uniform normalization method. Instead, one
may have to consider a process of adjusting locally for best fit to
the template. (While measuring the matching, one could “jitter”
the figure locally; if an improvement were found the process could
be repeated using a slightly different change, etc.) There is
usually no practical possibility of applying to the figure all of the 
admissible transformations. And to recognize the topological 
equivalence of pairs such as those below is likely beyond any
practical kind of iterative local-improvement or hill-climbing
matching procedure. (Such recognitions can be mechanized,
though, by methods which follow lines, detect vertices, and build
up a description in the form, say, of a vertex-connection table.)
 

The figures A, A’ and B, B’ are topologically equivalent pairs.
Lengths have been distorted in an arbitrary manner, but the
connectivity relations between corresponding points have been
preserved. In Sherman (8] and Haller [391 we find computer
programs which can deal with such equivalences.

 
The template-matching scheme, with its normalization and direct
comparison and matching criterion, is just too limited in
conception to be of much use in problems that are more difficult. If
the transformation set is large, normalization, or “fitting,” may
be impractical, especially if there is no adequate heuristic
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connection on the space of transformations. Furthermore, for
each defined pattern, the system has to be presented with a
prototype. But if one has in mind an abstract class, one may
simply be unable to represent its essential features with one or a
very few concrete examples. How could one represent with a
single prototype the class of figures, which have an even number
of disconnected parts? Clearly, the template system has
negligible descriptive power. The property-list system frees us
from some of these limitations.
 

D. Property Lists and “Characters”
 
We define a property to be a two-valued function, which divides 
figures into two classes; a figure is said to have or not have the
property according to whether the function’s value is 1 or 0. Given
a number N of distinction properties, we could define as many as
2**n subclasses by their set intersections and, hence, as many as 
2**2**n patterns by combining the properties with ANDs and ORs.
Thus, if we have three properties, rectilinear, connected, and 
cyclic, there are eight subclasses and 256 patterns defined by
their intersections

The eight regions represent all the possible configurations of
values of the three properties "rectilinear," "connected,"
"containing a loop." Each region contains a representative
figure, and its associated binary "Character" sequence.

 
If the given properties are placed in a fixed order then we can
represent any of these elementary regions by a vector, or string of
digits. The vector so assigned to each figure will be called the
Character of that figure (with respect to the sequence of
properties in question). (In [9] we use the term characteristic for a
property without restriction to 2 values.) Thus a square has the 
Character (1, 1, 1) and a circle the Character (0, 1, 1) for the given
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sequence of properties.
 
For many problems, one can use such Characters as names for
categories and as primitive elements with which to define an
adequate set of patterns. Characters are more than conventional
names. They are instead very rudimentary forms of description
(having the form of the simplest symbolic expression—the list) 
whose structure provides some information about the designated
classes. This is a step, albeit a small one, beyond the template
method; the Characters are not simple instances of the patterns, 
and the properties may themselves be very abstract. Finding a
good set of properties is the major concern of many heuristic
programs.
 

E. Invariant Properties
 
One of the prime requirements of a good property is that it be
invariant under the commonly encountered equivalence
transformations. Thus for visual Pattern-Recognition we would
usually want the object identification to be independent of uniform 
changes in size and position. In their pioneering paper 1947 Pitts
and McCulloch [10] describe a general technique for forming
invariant properties from noninvariant ones, assuming that the
transformation space has a certain (group) structure. 
 
The idea behind their mathematical argument is this: suppose that
we have a function P of figures, and suppose that for a given
figure F we define [F] = {F1, F2 . . .} to be the set of all figures 
equivalent to F under the given set of transformations; further,
define P [F] to be the set {P (F1), P (F2), . . .} of values of P on
those figures. Finally, define P* [F] to be AVERAGE (P [F]). Then
we have a new property P* whose values are independent of the 
selection of F from an equivalence class defined by the
transformations. We have to be sure that when different 
representatives are chosen from a class the collection [F] will 
always be the same in each case. In the case of continuous
transformation spaces, there will have to be a measure or the 
equivalent associated with the set [F] with respect to which the 
operation AVERAGE is defined, say, as an integration. In the
case studied in [10] the transformation space is a group with a
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uniquely defined Haar measure: the set [F] can be computed 
without repetitions by scanning through the application of all the
transforms T to the given figure so that the invariant property can
be defined by their integration over that measure. The result is
invariant of which figure is chosen because the integration is over 
a (compact) group.
 
This method is proposed as a neurophysiological model for
pitch-invariant hearing and size-invariant visual recognition
(supplemented with visual centering mechanisms). This model is
discussed also on p160 of Wiener [11].) Practical application is
probably limited to one-dimensional groups and analog scanning
devices. 
 
In most recent work, this problem is avoided by using properties
already invariant under these transformations. Thus, a property
might count the number of connected components in a
picture—which is invariant of size and position. Or a property may
count the number of vertical lines in a picture—which is invariant
of size and position (but not rotation).
 

F. Generating Properties
 
The problem of generating useful properties has been discussed
by Selfridge [12]; we shall summarize his approach. The machine
is given, at the start, a few basic transformations A1,...An, each of 
which transforms, in some significant way, each figure into
another figure. A1 might, for example, remove all points not on a
boundary of a solid region; A2 might leave only vertex points; A3
might fill up hollow regions, etc. 

 
An arbitrary sequence of picture transformations, followed by a
numerical-valued function, can be used as a property function
for pictures. A1 removes all points which are not at the edge of a
solid region. A2 leaves only vertex points at which an arc
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suddenly changes direction. The function C simply counts the
number of points remaining in the picture. 

 
Each sequence Ai1, Ai2 , . . . of such operations forms a new
transformation, so that there is available an infinite variety. We
provide the machine also with one or more “terminal" operations
that convert a picture into a number, so that any sequence of the
elementary transformations, followed by a terminal operation,
defines a property. (Dineen [13] and Kirsch [] describe how such
processes were programmed in a digital computer.) We can start
with a few short sequences, perhaps chosen randomly. Selfridge
describes how the machine might learn new useful properties.
 

"We now feed the machine A’s and 0’s telling the machine each
time which letter it is. Beside each sequence under the two
letters, the machine builds up distribution functions from the
results of applying the sequences to the image. Now, since the
sequences were chosen completely randomly, it may well be 
that most of the sequences have very flat distribution functions;
that is, they [provide] no information, and the sequences are
therefore [by definition] not significant. Let it discard these and
pick some others. Sooner or later, however, some sequences
will prove significant; that is, their distribution functions will peak
up somewhere. What the machine does now is to build up new
sequences like the significant ones. This is the important point. If
it merely chose sequences at random, it might take a very long
while indeed to find the best sequences. But with some
successful sequences, or partly successful ones, to guide it, we
hope that the process will be much quicker. The crucial question
remains: How do we build up sequences “like” other
sequences, but not identical? As of now we think we shall
merely build sequences from the transition frequencies of the
significant sequences. We shall build up a matrix of transition
frequencies from the significant ones, and use them as transition
probabilities with which to choose new sequences.
"We do not claim that this method is necessarily a very good
way of choosing sequences—only that it should do better than
not using at all the knowledge of what kinds of sequences have
worked. It has seemed to us that this is the crucial point of
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learning." See p. 93 of [12].
 
It would indeed be remarkable if this failed to yield properties
more useful than would be obtained from completely random
sequence selection. The generating problem is discussed further 
in Minsky [14]. Newell, Shaw, and Simon [15] describe more
deliberate, less statistical, techniques that might be used to
discover sets of properties appropriate to a given problem area.
One may think of the Selfridge proposal as a system that uses a
finite-state language to describe its properties. Solomonoff [18
and [55] proposes some techniques for discovering common
features of a set of expressions, e.g., of the descriptions of those 
properties of already established utility; the methods can then be
applied to generate new properties with the same common
features. I consider the lines of attack in [12], [15], [18] and [55],
although still incomplete, to be of the greatest importance.
 

G. Combining Properties
 
One cannot expect easily to find a small set of properties that will
be just right for a problem area. It is usually much easier to find a
large set of properties each of which provides a little useful
information. Then one is faced with the problem of finding a way
to combine them to make the desired distinctions. The simplest 
method is to define, for each class, a prototypical "characteristic
vector" (a particular sequence of property values) and then to use
some matching procedure, e.g., counting the numbers of
agreements and disagreements, to compare an unknown with
these chosen prototypes.
 
The linear weighting scheme described just below is a slight
generalization on this. Such methods treat the properties as more
or less independent evidence for and against propositions; more
general procedures (about which we have yet little practical 
information) must account also for nonlinear relations between
properties, i.e., must contain weighting terms for joint subsets of
property values.
 

I. “Bayes nets” for combining independent properties:
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We consider a single experiment in which an object is placed in
front of a property-list machine. Each property E; will have a
value, 0 or 1. Suppose that there has been defined some set of
object classes Fj, and that we want to use the outcome of this
experiment to decide in which of these classes the object belongs.
 
Assume that the situation is probabilistic, and that we know the
probability pij that, if the object is in class Fj then the i-th property
Ei will have value 1. Assume further that these properties are
independent; that is, even given Fj, knowledge of the value of Ei
tells us nothing more about the value of a different Ek in the same
experiment. (This is a strong condition—see below.) Let fj be the
absolute probability that an object is in class Fi. Finally, for this
experiment define V to be the particular set of is for which the Ei’s
are 1. Then this V represents the Character of the object! From
the definition of conditional probability, we have
 

Pr(Fi,V) = Pr(V)Pr (Fj|V) = Pr(Fj)Pr(V|Fj)

 
Given the Character V, we want to guess which Fj has occurred
(with the least chance of being wrong—the so-called maximum
likelihood estimate); that is, for which j is Pr(Fj) the largest. Since 
in the above Pr(V) does not depend on j, we have only to 
calculate for which j is Pr(V)Pr(Fj|V) = Pr(Fj)Pr(V|Fj) the largest.
Hence, by our independence hypothesis, we have to maximize 

fjPpijPqij = fjPpij/qijPqij,
.

where the first product is over V and the second, over its
complement. These “maximum likelihood” decisions can be
made (Fig. 6) by a simple network device. [7]
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"Net” model for maximum-likelihood decisions based on linear
weightings of property values. The input data are examined by
each "property filter” E i. Each of these has 0 and 1 output 

channels, one of which is excited by each input. These outputs
are weighted by the corresponding pij’s, as shown in the text.

The resulting signals are multiplied in the Fj units, each of which 

collects evidence for a particular figure class. (We could have
used here log(pij), and added.) The final decision is made by the 

topmost unit D, who merely chooses that Fj with the largest 

score. Note that the logarithm of the coefficient pij/qij in the

second expression of (1) can be construed as the “weight of
the evidence” of E i in favor of Fj. (See also [21] and [22].)

 
Note: At the cost of an additional network layer, we may also
account for the possible cost gjk that would be incurred if we were
to assign to Fk a figure really in class Fj. In this case, the
minimum cost decision is given by the k for which SigjkfjPpijPqij.
 
These nets resemble the general schematic diagrams proposed in
the “Pandemonium” model of [Selfridge 19, Fig. 3.] It is
proposed there that some intellectual processes might be carried
out by a hierarchy of simultaneously functioning submachines
called ’demons’. Each unit is set to detect certain patterns in the
activity of others, and the output of each unit announces the
degree of confidence of that unit that it sees what it is looking for.
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Our Ei units are Selfridge’s "data demons.” Our units Fj are his
“cognitive demons”; each collects, from the abstracted data,
evidence for a specific proposition. The topmost “decision
demon” D responds to that one in the multitude below it whose
shriek is the loudest. (See also the report in [20].)
 
It is quite easy to add to this “Bayes network model” a
mechanism, which will enable it to learn the optimal connection
weightings. Imagine that, after each event, the machine is told
which F has occurred; we could implement this by sending back a
signal along the connections leading to that F unit. Suppose that 
the connection or for pij or qij contains a two-terminal device (or
“synapse”) which stores a number wij. Whenever the joint 
event (Fj, Ei = 1) occurs, we modify wij by replacing it by (wij +1)q, 
where q is a factor slightly less than unity. And when the joint
event (Fj, Ei = 0) occurs, we decrement wij by replacing it with 
(wij) q. It is not difficult to show that the expected values of the wij
’s will become proportional to the pij ’s [and, in fact, approach pij
[q/(1-q]. Hence, the machine tends to learn the optimal weighting
on the basis of experience. (One must put in a similar mechanism
for estimating the fj ’s.) The variance of the normalized weight
approaches [(1-q)/(1 +q)] pijqij; Thus a small value for q means 
rapid learning but is associated with a large variance, hence, with
low reliability. Choosing q close to unity means slow, but reliable,
learning. q is really a sort of memory decay constant, and its
choice must be determined by the noise and stability of the
environment much noise requires long averaging times, while a 
changing environment requires fast adaptation. The two
requirements are, of course, incompatible and the decision has to
be based on an economic compromise. (See also [7] and [21])
 

G. Using random nets for Bayes decisions:
 
The nets of Fig. 6 are very orderly in structure. Is all this structure
necessary? Certainly if there were a great many properties, each
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of which provided very little marginal information, some of them
would not be missed. Then one might expect good results with a
mere sampling of all the possible connection paths w~~. And one
might thus, in this special situation, use a random connection net.
The two-layer nets here resemble those of the “perceptron”
proposal of Rosenblatt [22]. I n the latter, there is an additional
level of connections coming directly from randomly selected
points of a “retina.” Here the properties, the devices which
abstract the visual input data, are simple functions which add
some inputs, subtract others, and detect whether the result
exceeds a threshold. Equation (1), we think, illustrates what is of
value in this scheme. It does seem clear that such nets can
handle a maximum-likelihood type of analysis of the output of the
property functions. But these nets, with their simple, randomly
generated, connections can probably never achieve recognition of
such patterns as “the class of figures having two separated
parts,” and they cannot even achieve the effect of template
recognition without size and position normalization (unless sample
figures have been presented previously in essentially all sizes and
positions). For the chances are extremely small of finding, by
random methods, enough properties usefully correlated with
patterns appreciably more abstract than are those of the
prototype-derived kind. And these networks can really only
separate out (by weighting) information in the individual input
properties; they cannot extract further information present in
nonadditive form. The “perceptron” class of machines has
facilities neither for obtaining better-than-chance properties nor for
assembling better-than-additive combinations of those it gets from
random construction.10
 
For recognizing normalized printed or hand-printed characters,
single-point properties do surprisingly well [23]; this amounts to
just “averaging” many samples. Bledsoe and Browning [24]
claim good results with point-pair properties. Roberts [25]
describes a series of experiments in this general area. Doyle [26]
without normalization but with quite sophisticated properties
obtains excellent results; his properties are already substantially
size- and position-invariant. A general review of Doyle’s work and
other pattern-recognition experiments will be found in Selfridge
and Neisser [20].
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For the complex discrimination, e.g., between one and two
connected objects, the property problem is very serious,
especially for long wiggly objects such as are handled by Kirsch
[27]. Here some kind of recursive processing is required and
combinations of simple properties would almost certainly fail even 
with large nets and long training.
 
We should not leave the discussion of decision net models
without noting their important limitations. The hypothesis that the
pis represent independent events is a very strong condition
indeed. Without this hypothesis we could still construct maximum-
likelihood nets, but we would need an additional layer of cells to 
represent all of the joint events V; that is, we would need to know
all the Pr (Fj|V). This gives a general (but trivial) solution, but
requires 2**n cells for n properties, which is completely impractical
for large systems. What is required is a system which computes
some sampling of all the joint conditional probabilities, and uses
these to estimate others when needed. The work of Uttley [28],
[29], bears on this problem, but his proposed and experimental
devices do not yet clearly show how to avoid exponential growth.
See also Roberts [25], Papert [21], and Hawkins [22]. We can find
nothing resembling this type of analysis in Rosenblatt [22].
 
H. Articulation and Attention—Limitations of the Property-List
Method
 
[Note: I substantially revised this section in December 2000, to
clarify and simplify the notations.] Because of its fixed size, the
property-list scheme is limited in the complexities of the relations it
can describe. If a machine can recognize a chair and a table, it
surely should be able to tell us that "there is a chair and a table."
To an extent, we can invent properties in which some such
relationships are embedded, but no formula of fixed form can 
represent arbitrary complex relationships. Thus, we might want to
describe the leftmost figure below as,
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"A rectangle (1) contains two subfigures disposed horizontally.
The part on the left is a rectangle (2) that contains two
subfigures disposed vertically, the upper part of which is a circle
(3) and the lower a triangle (4). The part on the right . . . etc."

 
Such a description entails an ability to separate or "segment" the
scene into parts. (Note that in this example, the articulation is
essentially recursive; the figure is first divided into two parts; then
each part is described using the same machinery.) We can
formalize this kind of description in an expression language 
whose fundamental grammatical form is a function R(L) where F
names a relation and L is an ordered list of the objects or
subfigures which bear that relation to one another. We obtain the
required flexibility by allowing the members of the list L to contain
not only the names of "elementary" figures but also "expressions
that describe subfigures. Then the leftmost scene above may be
described by the expression
 
IN(box(-->(IN (box (ABOVE(cir, triangle))), IN(cir(ABOVE (-->(cir,

cir), cir))))))),
 

where "IN (x, y)" means ’y is inside x,’-->(x y)" means ’X is to the
left of Y,’ and "ABOVE (x, y)" means ’x is above y.’ This
description may be regarded as an expression in a simple
"list-structure" language. Newell, Shaw and Simon have
developed powerful computer techniques for manipulating 
symbolic expressions in such languages for purposes of heuristic
programming. (See the remarks at the end of Section IV. If some
of the members of a list are lists, they must be surrounded by
exterior parentheses, and this accounts for the accumulation of
parentheses.
This description language may be regarded as a simple kind of
"list-structure" language. Newell, Shaw and Simon have
developed powerful computer techniques for manipulating
symbolic expressions in such languages for purposes of heuristic
programming. See the remarks at the end of Section IV. By
introducing notation for the relations ’inside of’, ’to the left of’, and
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’above’, we construct a symbolic description. Such descriptions
can be formed and manipulated by machines. 
 
By abstracting out the complex relation between the parts of the
figure, we can re-use the same formula to describe all three of the
figures above, by using the same "more abstract" expression for
all of them:
F(A, B, C, D, E, F, G, H) = IN(A, (-->(IN(B, (ABOVE (C, D))), IN(E,

(ABOVE (-->(F, G, H))))))),
 
in which each particular geometric figure is replaced by one of the
new variables. Thus, the left-hand figure can be represented by
 

F(box, box, cir, tri, cir, cir, cir, cir),
 
and the other two scenes can be represented by the same F with
different substitutions for its variables. It is up to the programmer
to decide at just what level of complexity a part of a picture should
be considered "primitive". This will depend on what the description
is to be used for. We could further divide the drawings into
vertices, lines, and arcs. Obviously, for some applications the 
relations would need more metrical information, e.g., specification
of lengths or angles.
 
The important thing about such "articular" descriptions is that they
can be obtained by repeated application of a fixed set of
pattern-recognition techniques. Thus we can obtain arbitrarily
complex descriptions from a fixed complexity
classification-mechanism. The new element required in the
mechanism (beside the capacity to manipulate the list-structures)
is the ability to articulate—to "attend fully" to a selected part of the
picture and bring all one’s resources to bear on that part. In
efficient problem-solving programs, w e will not usually complete
such a description in a single operation. Instead, the depth or
detail of description will be under the control of other processes.
These will reach deeper, or look more carefully, only when they
have to, e.g., when the presently available description is
inadequate for a current goal. The author, together with L. Hodes,
is working on pattern-recognition schemes using articular
descriptions. By manipulating the formal descriptions, we can deal
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with overlapping and incomplete figures, and several other
problems of the “Gestalt” type.
 
It seems likely that as machines are turned toward more difficult
problem areas, passive classification systems will become less
adequate, and we may have to turn toward schemes which are
based more on internally-generated hypotheses, perhaps
“error-controlled” along the lines proposed by MacKay [89].
 
Space requires us to terminate this discussion of
pattern-recognition and description. Among the important works
not reviewed here should be mentioned those of Bomba [33] and
Grimsdale, et al. [34], which involve elements of description,
Unger [35] and Holland [36] for parallel processing schemes,
Hebb [31] who is concerned with physiological description
models, and the work of the Gestalt psychologists, notably Kohler 
[38] who have certainly raised, if not solved, a number of
important questions. Sherman [8], Haller [39] and others have
completed programs using line-tracing operations for topological
classification. The papers of Selfridge [12], [43], have been a
major influence on work in this general area.
 
See also Kirsch, et al. [21], for discussion of a number of 
interesting computer image-processing techniques, and see Minot
[40] and Stevens [41] for reviews of the reading machine and
related problems. One should also examine some biological work,
e.g., Tinbergen [42] to see instances in which some
discriminations which seem, at first glance very complicated are
explained on the basis of a few apparently simple properties
arranged in simple decision trees.
 

III. LEARNING SYSTEMS
 
Summary—In order to solve a new problem, one should first try
using methods similar to those that have worked on similar
problems. To implement this “basic learning heuristic” one
must generalize on past experience, and one way to do this is to
use success-reinforced decision models. These learning systems
are shown to be averaging devices. Using devices that also learn
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which events are associated with reinforcement, i.e., reward, we
can build more autonomous “secondary reinforcement”
systems. In applying such methods to complex problems, one
encounters a serious difficulty—in distributing credit for success of
a complex strategy among the many decisions that were involved.
This problem can be managed by arranging for local
reinforcement of partial goals within a hierarchy, and by grading
the training sequence of problems to parallel a process of
maturation of the machine’s resources.
 
In order to solve a new problem one uses what might be called
the basic learning heuristic first try using methods similar to those
which have worked, in the past, on similar problems. We want our
machines, too, to benefit from their past experience. Since we
cannot expect new situations to be precisely the same as old
ones, any useful learning will have to involve generalization
techniques. There are too many notions associated with
‘learning” to justify defining the term precisely. But we may be
sure that any useful learning system will have to -use records of
the past as evidence for more general propositions; it must thus
entail some commitment or other about “inductive inference.”
(See Section V-B.) Perhaps the simplest way of generalizing
about a set of entities is through constructing a new one which is
an “ideal,” or rather, a typical member of that set; the usual
way to do this is to smooth away variation by some sort of
averaging technique. And indeed we find that most of the simple 
learning devices do incorporate some averaging technique--often
that of averaging some sort of product, thus obtaining a sort of
correlation. We shall discuss this family of devices here, and
some more abstract schemes in Section V.
 

A. Reinforcement
 
A reinforcement process is one in which some aspects of the
behavior of a system are caused to become more (or less)
prominent in the future as a consequence of the application of a
“reinforcement operator” Z. This operator is required to affect
only those aspects of behavior for which instances have actually
occurred recently.
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The analogy is with “reward” or “extinction” (not
punishment) in animal behavior. The important thing about this
kind of process is that it is “operant” (a term of Skinner [44])
the reinforcement operator does not initiate behavior, but merely
selects that which the Trainer likes from that which has occurred.
Such a system must then contain a device M which generates a
variety of behavior (say, in interacting with some environment)
and a Trainer who makes critical judgments in applying the
available reinforcement operators. (See Fig. 8.)
 
Let us consider a very simple "operant reinforcement" model.

 
In response to a stimulus from the environment, the machine
makes one of several possible responses. It remembers what
decisions were made in choosing this response. Shortly
thereafter, the Trainer sends to the machine positive or negative 
reinforcement (reward) signal; this increases or decreases the
tendency to make the same decisions in the future. Note that the
Trainer need not know how to solve problems, but only how to
detect success or failure, or relative improvement; his function is
selective. The Trainer might be connected to observe the actual
stimulus + response activity or, in a more interesting kind of 
system, some function of the state of the environment.
 
Suppose that on each presentation of a stimulus S an animal has
to make a choice, e.g., to turn left or right, and that its probability
of turning right, at the n-th trial, is pn. Suppose that we want it to
turn right. Whenever it does this, we might “reward” it by
applying the operator Z+:
 

Pn+1 = Z+(pn) = q pn + (1-q) 0 < q < 1
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which moves p a fraction (1-q) of the way towards unity. (Properly,
the reinforcement functions should depend both on the p’s and on 
the previous reaction. Reward should decrease p if our animal
has just turned to the left. The notation in the literature is 
somewhat confusing in this regard.) If we dislike what it does we
apply negative reinforcement,

 
moving p the same fraction of the way toward 0. Some theory of
such "linear" learning operators, generalized to several stimuli and
responses, will be found in Bush and Mosteller [45]. We can show
that the learning result is an average weighted by an
exponentially decaying time factor: Let Zn be ±1 according to
whether the n-th event is rewarded or extinguished and replace
pn by cn-2pn-1 so that -1<cn<1, as for a correlation coefficient.
Then (with c0 = 0) we obtain by induction

and since

we can write this as.

 (1)
If the term Zi is regarded as a product of (i) how the creature
responded and (ii) which kind of reinforcement was given, then cn
is a kind of correlation function (with the decay weighting) of the
joint behavior of these quantities. The ordinary,
uniformly-weighted average has the same general form but with
time dependent q:
 

 (2)
 
In (1) we have again the situation described in Section II-G-1; a
small value of q gives fast learning, and the possibility of quick
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adaptation to a changing environment. A near-unity value of q
gives slow learning, but also smoothes away uncertainties due to
noise. As noted in Section II-G-1, the response distribution comes
to approximate the probabilities of rewards of the alternative
responses. The importance of this phenomenon has, I think, been
overrated; it is certainly not an especially rational strategy. One 
reasonable alternative is that of computing the numbers pij as
indicated, but actually playing at each trial the “most likely”
choice. Except in the presence of a hostile opponent, there is
usually no reason to play a “mixed” strategy. The question of
just how often one should play a strategy different from the
estimated optimum, in order to gain information, is an underlying
problem in many fields. See, e.g., [85].
 
Samuel’s coefficient-optimizing program [2] [see Section III-C, 1)],
uses an ingenious compromise between the exponential and the
uniform averaging methods. The value of N in (2) above begins at
16 and so remains until n= 16, then N is 32 until n=32, and so on
until n = 256. Thereafter N remains fixed at 256. This nicely
prevents violent fluctuations in ~n at the start, approaches the
uniform weighting for a while, and finally approaches the
exponentially-weighted correlation, all in a manner that requires
very little computation effort. Samuel’s program is at present the
outstanding example of a game-playing program that matches 
average human ability, and its success (in real time) is attributed
to a wealth of such elegancies, both in heuristics and in
programming.
 
The problem of extinction or “unlearning” is especially critical
for complex, hierarchical, learning. For, once a generalization
about the past has been made, one is likely to build upon it. Thus,
one may come to select certain properties as important and begin
to use them in the characterization of experience, perhaps storing
one’s memories in terms of them. If later, it is discovered that
some other properties would serve better, then one must face the
problem of translating, or abandoning, the records based 011 the
older system. This may be a very high price to pay. One does not
easily give up an old way of looking at things, if the better one
demands much effort and experience to be useful. Thus the
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training sequences on which our machines will spend their
infancies, so to speak, must be chosen very shrewdly to insure 
that early abstractions will provide a good foundation for later
difficult problems.
 
Incidentally, in spite of the space given here for their exposition, I
am not convinced that such “incremental” or “statistical”
learning schemes should play a central role in our models. They
will certainly continue to appear as components of our programs
but, I think, mainly by default. The more intelligent one is, the
more often he should be able to learn from an experience
something rather definite; e.g., to reject or accept a hypothesis, or
to change a goal. (The obvious exception is that of a truly
statistical environment in which averaging is inescapable. But the
heart of problem solving is always, we think, the combinatorial
part that gives rise to searches, and we should usually be able to
regard the complexities caused by “noise” as mere
annoyances, however irritating they may be.) In this connection,
we can refer to the discussion of memory in Miller, Galanter and
Pribram [46]. This seems to be the first major work in Psychology
to show the influence of work in the artificial intelligence area, and
its programme is generally quite sophisticated.
 
B. Secondary Reinforcement and Expectation Models
 
The simple reinforcement system is limited by its dependence on
the Trainer. If the Trainer can detect only the solution of a
problem, then we may encounter “mesa” phenomena, which
will limit performance on difficult problems. (See Section I-C.) One
way to escape this is to have the machine learn to generalize on
what the Trainer does. Then, in difficult problems, it may be able
to give itself partial reinforcements along the way, e.g., upon the
solution of relevant subproblems. This machine has some such
ability:
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An additional device U gives the machine of Fig. 8 the ability to
learn which signals from the environment have been associated
with reinforcement. The primary reinforcement signals S are
routed through U. By a Pavlovian conditioning process (not
described here), external signals come to produce reinforcement
signals like those that have frequently succeeded them in the
past. Such signals might be abstract, e.g., verbal
encouragement. If the "secondary reinforcement” signals are
allowed, in turn, to acquire further external associations
(through, e.g., a channel ZU as shown) the machine might come

to be able to handle chains of subproblems. But something must
be done to stabilize the system against the positive symbolic
feedback loop formed by the path ZU. The profound difficulty

presented by this stabilization problem may be reflected in the
fact that, in lower animals, it is very difficult to demonstrate such
chaining effects.

 
The new unit U is a device that learns which external stimuli are
strongly correlated with the various reinforcement signals, and
responds to such stimuli by reproducing the corresponding
reinforcement signals. (The device U is not itself a reinforcement
learning device; it is more like a “Pavlovian” conditioning
device, treating the Z signals as “unconditioned” stimuli and
the S signals as moves and replies. We might also limit the
number of conditioned stimuli.) The heuristic idea is that any
signal from the environment that in the past has been
well-correlated with (say) positive reinforcement is likely to be an
indication that something good has just happened. If the training
on early problems was such that this is realistic, then the system
eventually should be able to detach itself from the Trainer, and
become autonomous. If we further permit “chaining” of the
“secondary reinforcers,” e.g., by admitting the connection
shown as a dotted line, the scheme becomes quite powerful, in
principle. There are obvious pitfalls in admitting such a degree of
autonomy; the values of the system may drift to a non-adaptive 
condition.
 

C: Prediction and Expectation
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The evaluation unit U is supposed to acquire an ability to tell
whether a situation is good or bad. This evaluation could be
applied to imaginary situations as well as to real ones. If we could 
estimate the consequences of a proposed action (without its
actual execution), we could use U to evaluate the (estimated) 
resulting situation. This could help in reducing the effort in search,
and we would have in effect a machine with some ability to look
ahead, or plan. In order to do this we need an additional device P
which, given the descriptions of a situation and an action, will 
predict a description of the likely result. (We will discuss schemes
for doing this in Section IV-C.) The device P might be constructed
along the lines of a reinforcement learning device. In such a
system, the required reinforcement signals would have a very 
attractive character. For the machine must reinforce P positively 
when the actual outcome resembles that which was predicted 
accurate expectations are rewarded. If we could further add a
premium to reinforcement of those predictions which have a novel
aspect, we might expect to discern behavior motivated by a sort of
curiosity. In the reinforcement of mechanisms for confirmed novel
expectations (or new explanations), we may find the key to
simulation of intellectual motivation. See the discussion of 
Bernstein [48] and the more extensive discussion in the very
suggestive paper of Newell, Shaw, and Simon [49]; one should
not overlook the pioneering paper of Newell [50] and Samuel’s
discussion of the minimaxing process in [2].
 

Samuel’s Program for Checkers
 

In Samuel’s “generalization learning” program for the game of
checkers [2] we find a novel heuristic technique which could be
regarded as a simple example of the “expectation
reinforcement” notion. Let us review very briefly the situation in
playing two-person board games of this kind. As noted by
Shannon [3] such games are in principle finite, and a best strategy
can be found by following out all possible continuations—if he
goes there I can go there, or there, etc.—and then
“backing-up” or “minimaxing” from the terminal positions,
won, lost, or drawn. But in practice, the full exploration of the
resulting colossal “move-tree” is out of the question. No doubt,
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some exploration will always be necessary for such games. But
the tree must be pruned. We might simply put a limit on depth of
exploration—the number of moves and replies. We might also
limit the number of alternatives explored from each position—this
requires some heuristics for selection of "plausible moves." Now,
if the backing-up technique is still to be used (with the incomplete
move-tree) one has to substitute for the absolute “win, lose, or
draw” criterion some other “static” way of evaluating
nonterminal positions. [Note: In some problems the backing-up
process can be handled in closed analytic form so that one may
be able to use such methods as Bellman’s “Dynamic
Programming” [51]. Freimer [52] gives some examples for which
limited “look-ahead” doesn’t work.]
 

 
"Backing-up" the static evaluations of proposed moves in a
game-tree. From the vertex at the left, representing the present
position in a board game radiate three branches representing the
player’s proposed moves. Each of these might be countered by a
variety of opponent moves, and so on. According to some
program, a finite tree is generated. Then the worth to the player of
each terminal board position is estimated. (See text) If the
opponent has the same values, he will choose to minimize the
score while the player will always try to maximize. The heavy lines
show how this minimaxing process backs up until a choice is 
determined for the present position.
The full tree for chess has the order of 10120 branches—beyond
the reach of any man or computer. There is a fundamental
heuristic exchange) between the effectiveness of the evaluation
function and the extent of the tree. A very weak evaluation (e.g.
one that just compares the player’s values of pieces) would yield a
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devastating game if the machine could explore all continuations
out to, say 20 levels. But only 6 levels, roughly within range of our
presently largest computers, would probably not give a brilliant
game; less exhaustive strategies perhaps along the lines of [49]
would be more profitable.
 
Perhaps the simplest scheme is to use a weighted sum of some
selected set of “property” functions of the positions mobility,
advancement, center control, and the like. This is done in
Samuel’s program, and in most of its predecessors. Associated
with this is a multiple-simultaneous-optimizer method for
discovering a good coefficient assignment (using the correlation
technique noted in Section III-A). But the source of reinforcement
signals in [2] is novel. One cannot afford to play out one or more
entire games for each single learning step. Samuel measures
instead for each move the difference between what the evaluation
function yields directly of a position and what it predicts on the 
basis of an extensive continuation exploration, i.e., backing-up.
The sign of this error, "Delta,"" is used for reinforcement; thus the
system may learn something at each move.
 

Note: It should be noted that [2] describes also a rather
successful checker-playing program based on recording and
retrieving information about positions encountered in the past, a
less abstract way of exploiting past experience. Samuel’s work
is notable in the variety of experiments that were performed with
and without various heuristics. This gives an unusual opportunity 
to really find out how different heuristic methods compare. More
workers should choose (other things being equal) problems for
which such variations are practicable. See p. 108 of [50].

 
D. The Credit-Assignment Problem for Learning Systems

 
In playing a complex game such as chess or checkers, or in
writing a computer program, one has a definite success
criterion—the game is won or lost. But in the course of play, each
ultimate success (or failure) is associated with a vast number of
internal decisions. If the run is successful, how can we assign
credit for the success among the multitude of decisions? As
Newell noted,
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"It is extremely doubtful whether there is enough information in
"win, lose or draw", when referred to the whole play of the game
to permit any learning at all over available time scales.... For
learning to take place, each play of the game must yield much
more information. This is . . . achieved by breaking the problem
into components. The unit of success is the goal. If a goal is
achieved its subgoals are reinforced. If not, they are inhibited.
(Actually, what is reinforced is the transformation rule that
provided the subgoal.) … . This also is true of the other kinds of
structure: every tactic that is created provides information about
the success or failure of tactic search rules; every opponent’s
action provides information about success or failure of likelihood
inferences; and so on. The amount of information relevant to
learning increases directly with the number of mechanisms in
the chess-playing machine.

 
We are in complete agreement with Newell on this approach to
the problem. [See also Samuel’s discussion (p. 22 of [2]) on
assigning credit for a change in "Delta."]
 
It is my impression that many workers in the area of
"self-organizing"" systems and "random neural nets"’ do not feel
the urgency of this problem. Suppose that one million decisions
are involved in a complex task (such as winning a chess game).
Could we assign to each decision element one-millionth of the
credit for the completed task? In certain special situations we can
do just this—e.g., in the machines of [22], [25] and [92], etc.,
where the connections being reinforced are to a sufficient degree
independent. But the problem-solving ability is correspondingly
weak.
 
For more complex problems, with decisions in hierarchies (rather
than summed on the same level) and with increments small
enough to assure probable convergence, the running times would
become fantastic. For complex problems, we will have to define
"success’" in some rich local sense. Some of the difficulty may be
evaded by using carefully graded "training sequences"" as
described in the following section.
 



37

Friedberg’s Program-Writing Program: An important example of
comparative failure in this credit-assignment matter is provided by 
the program of Friedberg [53], [54] to solve program-writing
problems. The problem here is to write programs for a (simulated)
very simple digital computer. A simple problem is assigned, e.g.,
"compute the AND of two bits in storage and put the result in an
assigned location. "" A generating device produces a random
(64-instruction) program. The program is run and its success or 
failure is noted. The success information is used to reinforce
individual instructions (in fixed locations) so that each success
tends to increase the chance that the instructions of successful
programs will appear in later trials. (We lack space for details of
how this is done.) Thus the program tries to find "good"
instructions, more or less independently, for each location in
program memory. The machine did learn to solve some extremely
simple problems. But it took of the order of 1000 times longer than
pure chance would expect. In part I of [54], this failure is
discussed and attributed in part to what we called (Section I-C)
the "Mesa phenomenon." In changing just one instruction at a
time, the machine had not taken large enough steps in its search
through program space.
 
The second paper goes on to discuss a sequence of modifications
in the program generator and its reinforcement operators. With
these, and with some "priming" (starting the machine off on the
right track with some useful instructions), the system came to be
only a little worse than chance. The authors of [54] conclude that
with these improvements "the generally superior performance of
those machines with a success-number reinforcement mechanism 
over those without does serve to indicate that such a mechanism
can provide a basis for constructing a learning machine." I
disagree with this conclusion. It seems to me that each of the
"improvements" can be interpreted as serving only to increase the
step size of the search, that is, the randomness of the
mechanism; this helps to avoid the "mesa" phenomenon and thus
approach chance behavior. But it certainly does not show that the
"learning mechanism" is working--one would want at least to see 
some better-than-chance results before arguing this point. The
trouble, it seems, is with credit-assignment. The credit for a
working program can only be assigned to functional groups of
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instructions, e.g., subroutines, and as these operate in
hierarchies, we should not expect individual instruction
reinforcement to work well. (See the introduction to [53] for a 
thoughtful discussion of the plausibility of the scheme.) It seems
surprising that it was not recognized in [54] that the doubts raised
earlier were probably justified. In the last section of [54], we see
some real success obtained by breaking the problem into parts
and solving them sequentially. This successful demonstration
using division into subproblems does not use any reinforcement 
mechanism at all. Some experiments of similar nature are
reported in [94].
 
It is my conviction that no scheme for learning, or for
pattern-recognition, can have very- general utility unless there are
provisions for recursive, or at least hierarchical use of previous
results. We cannot expect at learning, system- to come to handle
very hard problems without preparing it with a reasonably graded
sequence of problems of growing difficulty. The first problem must
be one that can be solved in reasonable time with the initial
resources. The next must be capable of solution in reasonable
time by using reasonably simple and accessible combinations of
methods developed in the first, and so on. The only alternatives to
this use of an adequate "training sequence" are 1) advanced
resources, given initially, or 2) the fantastic exploratory processes
found perhaps only in the history of organic evolution. 
 

[Note: It should, however, be possible to construct learning
mechanisms which can select for themselves reasonably good
training sequences from an always complex environment, by
pre-arranging a relatively slow development or "maturation" of
tile system’s facilities. ’This might be done by pre-arranging that
the sequence of goals attempted by, the primary trainer match
reasonably well, at each stage, the complexity of performance 
mechanically available to the pattern-recognition and other parts
of the system. One might be able to do much of this by simply
limiting the depth of hierarchical activity, perhaps only later
permitting limited recursive activity.] 

 
And even there, if we accept the general view of Darlington [56]
who emphasizes the heuristic aspects of genetic systems, we
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must have developed early in, e.g., the phenomena of meiosis 
and crossing-over, quite highly specialized mechanisms providing
for the segregation of groupings related to solutions of
subproblems. Recently, much effort has been devoted to the
construction of training sequences about programming "teaching
machines." Naturally, the psychological literature abounds with 
theories of how complex behavior is built up from simpler. In our
own area, perhaps the work of Solomonoff [55], while overly
cryptic, shows the most thorough consideration of this
dependency, on training sequences.
 

IV. PROBLEM-SOLVING AND PLANNING
 
Summary—The solution, by machine, of very complex problems
will require a variety of administration facilities. During the course
of solving a problem, one becomes involved with a large
assembly of interrelated subproblems. From these, at each
stage, a very few must be chosen for investigation. This decision
must be based on 1) estimates of relative difficulties and 2)
estimates of centrality of the different candidates for attention.
Following subproblem selection (for which several heuristic
methods are proposed), one must choose methods appropriate
to the selected problems. But for very difficult problems, even
these step-by-step heuristics for reducing search will fail, and the
machine must have resources for analyzing the problem
structure in the large-in short, for "planning." We discuss a
variety of schemes for planning, including the use of
models-analogous, semantic, and abstract. Certain abstract
models which I call "Character Algebras" can be constructed by
the machine itself, on the basis of experience or analysis. For
concreteness, the discussion begins with a description of a
simple but significant system (LT) which encounters some of
these problems.

 
A. The "Logic Theory" Program of Newell, Shaw and Simon

 
It is not surprising that the testing grounds for early work on
mechanical problem solving have usually been areas of
mathematics, or games, in which the rules are learned with 
absolute clarity. The "Logic ’Theory," machine of [57] and [58],
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called "LT", was a first attempt to prove theorems in logic, by
frankly heuristic methods. Although the program was not by
human standards a brilliant success (and did not surpass its
designers), it stands as a landmark both in heuristic programming
and in the development of modern automatic programming.
 
The problem domain here is that of discovering Proofs in the
Russell-Whitehead system for the Propositional Calculus. That
system is given as a set of (five) axioms and (three) rules of
inference; the latter specify how certain transformations can be
applied to produce new theorems from old theorems and axioms.
 
The LT program is centered on the idea of "working backwards" to
find am proof. Given a theorem T to be proved, LT searches
among the axioms and previously established theorems for one
from which T can be deduced by a single application of one of 
three simple "Methods" (which embody the given rules of
inference). If one is found, the problem is solved. Or the search
might fail completely. But finally, the search may yield one or
more "problems" which are usually propositions from which T
many be deduced directly. If one of these can, in turn, be proved
a theorem the main problem will be solved. (The situation is
actually slightly more complex.) Each such subproblem is 
adjoined to the "subproblem list" (after a limited preliminary
attempt) and LT works around to it later. The full power of LT,
such as it is, can be applied to each subproblem, for LT can use
itself as a subroutine in a recursive fashion.
’The heuristic technique of working backwards yields something of
a teleological process, and LT is a forerunner of more complex
systems which construct hierarchies of goals and subgoals. Even
so, the basic administrative structure of the program is no more
than a nested set of searches through lists in memory. We shall 
first outline this structure and then mention a few heuristics that
were used in attempts to improve performance
 

1. Take the next problem from problem list. 
---------(If list is empty, EXIT with failure.)
2. Choose the next of the three basic Methods. 
--------- (If no more methods, go to 1.)
3. Choose the next of the list of axioms and previous theorems. 
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--------- (If no more, go to 2.) 
--------- Apply current Method to selected axiom or theorem. 
--------- If problem is solved, EXIT with complete proof. 
--------- If no result, go to 3. 
--------- If new subproblem arises, go to 4.
4) Try the special (substitution) Method on the subproblem. 
--------- If problem is solved, EXIT with complete proof. 
--------- If not, append subproblem to problem list and go to 3.

 
Among the heuristics that were studied were 1) a similarity test to
reduce the work in step 4 (which includes another search through 
the theorem list), 2) a simplicity test to select apparently easier
problems from the problem list, and 3) a strong nonprovability test
to remove from the problem list expressions which are probably
false and hence not provable. In a series of experiments
"learning" was used to find which earlier theorems had been most
useful and should be given priority in step 3. We cannot review
the effects of these changes in detail. Of interest was the balance
between the extra cost for administration of certain heuristics and 
the resultant search reductions; this balance was quite delicate in
some cases when computer memory became saturated. The
system seemed to be quite sensitive to the training sequence--the
order in which problems were given. And some heuristics that
gave no significant overall improvement did nevertheless affect
the class of solvable problems. Curiously enough, the general 
efficiency of LT was not greatly improved by any or all of these
devices. But all this practical experience is reflected in the design
of the much more sophisticated "GPS" system described briefly in
Section IV-D, 2).
 
Hao Wang [59] has criticized the LT project on the grounds that
there exist, as he and others have shown, mechanized proof
methods which, for the particular run of problems considered, use
far less machine effort than does LT and which have the 
advantage that they will ultimately find a proof for any provable
proposition. (LT does not have this exhaustive "decision
procedure" character and can fail ever to find proofs for some
theorems.) The authors of [58], perhaps unaware of the existence
of even moderately efficient exhaustive methods, supported their
arguments by comparison with a particularly inefficient exhaustive 
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procedure. Nevertheless, I feel that some of Wang’s criticisms are
misdirected. He does not seem to recognize that the authors of LT
are not so much interested in proving these theorems as they are
in the general problem of solving difficult problems. The
combinatorial system of Russell and Whitehead (with which LT
deals) is far less simple and elegant than the system used by 
Wang. (Note, e.g., the emphasis in [49] and [60]. Wang’s
procedure [59] too, works backwards, and can be regarded as a
generalization of the method of "falsification" for deciding
truth-functional tautology. In [93] and its unpublished sequel,
Wang introduces more powerful methods for solving harder
problems.]
 
Wang’s problems, while logically equivalent, are formally much 
simpler. His methods do not include any facilities for using
previous results (hence they are sure to degrade rapidly at a
certain level of problem complexity), while LT is fundamentally 
oriented around this problem. Finally, because of the very
effectiveness of Wang’s method on the particular set of theorems
in question, he simply did not have to face the fundamental 
heuristic problem of when to decide to give up on a line of attack.
Thus, the formidable performance of his program [59] perhaps
diverted his attention from heuristic problems that must again 
spring up when real mathematics is ultimately encountered.
 
This is not meant as a rejection of the importance of Wang’s work
and discussion. He and others working on ’mechanical
mathematics’ have discovered that there are proof procedures
which are much more efficient than has been suspected. Such 
work will unquestionably help inn constructing intelligent
machines, and these procedures will certainly be preferred, when
available, to "unreliable heuristic methods." Wang, Davis and
Putnam, and several others are now pushing these new
techniques into the far more challenging domain of theorem 
proving in the predicate calculus (for which exhaustive decision
procedures are no longer available). We have no space to discuss
this area, [See [61] and [93]] but it seems clear that a program to
solve real mathematical problems will have to combine the
mathematical sophistication of Wang with the heuristic
sophistication of Newell, Shaw and Simon. 
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All these efforts are directed toward the reduction of search
effort. In that sense, they are all heuristic programs. Since
practically no one still uses "heuristic" in a sense opposed to
"algorithmic, serious workers might do well to avoid pointless
argument on this score. The real problem is to find methods that
significantly delay the apparently inevitable exponential growth
of search trees.

 
B. Heuristics for Subproblem Selection

 
In designing a problem-solving system, the programmer often
comes equipped with a set of more or less distinct
"Methods’"—his real task is to find an efficient way for the
program to decide where and when the different methods are to
be used.
Methods, which do not dispose of a problem, may still transform it
to create new problems or subproblems. Hence, during the course
of solving one problem we may become involved with a large
assembly of interrelated subproblems. A "parallel" computer yet to
be conceived, might work on many at a time. But even the parallel 
machine must have procedures to allocate its resources because
it cannot simultaneously apply all its methods to all the problems.
We shall divide this administrative problem into two parts: the
selection of those subproblem(s) which seem most critical,
attractive, or otherwise immediate, and, in the next section, the
choice of which method to apply to the selected problem.
 
In the basic program for LT (Section IV-.X), subproblem selection
is very simple. New problems are examined briefly and (if not
solved at once) are placed at the end of the (linear) problem list.
The main program proceeds along this list (step 1), attacking the
problems in the order of their generation; more powerful systems
will have to be more judicious (both in generation and in selection
of problems) for only thus can excessive branching be restrained.
[Note that the simple scheme of LT has the property that each
generated problem will eventually get attention, even if several
are created in a step 3. If one were to turn full attention to each
problem, as generated, one might never return to alternate
branches.] In more complex systems we can expect to consider
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for each subproblem, at least these two aspects: 1) its apparent
"centrality-"—how will its solution promote the main goal, and 2)
its apparent "difficulty"—how much effort is it liable too consume.
We need heuristic methods to estimate each of these quantities
and further, to select accordingly one of the problems and allocate
to it some reasonable quantity of effort. [One will want to see if the
considered problem is the same as one already considered or
very similar. See the discussion in [62]. This problem might be
handled more generally by simply remembering the (Characters
of) problems that have been attacked, and checking new ones 
against this memory, e.g., by methods of [31], looking more
closely if there seems to be a match.] Little enough is known
about these matters, and so it is not entirely for lack of space that
the following remarks are somewhat cryptic.
 
Imagine that the problems and their relations are arranged to form
some kind of directed-graph structure [14], [57], and [62]. The
main problem is to establish a "valid" path between two initially
distinguished nodes. Generation of new problems is represented
by the addition of new, not-yet-valid paths, or by the insertion of
new nodes in old paths. Associate with each connection, 
quantities describing its current validity state (solved, plausible,
doubtful, etc.) and its current estimated difficulty.
 
Global Methods: The most general problem-selection methods
are "global"—at each step, they look over the entire structure.
There is one such simple scheme that works well on at least one
rather degenerate interpretation of our problem graph. This is
based on an electrical analogy suggested to us by a machine
designed by C. E. Shannon to play a variant of the game
marketed as "Hex" but known among mathematicians as "Nash".
(In [63], Shannon describes a variety of interesting game-playing
and learning machines.) The initial board position can be
represented as a certain network of resistors.
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This game is played on a network of equal resistors. One player’s
goal is to construct a short-circuit path between two given
boundaries; the opponent tries to open the circuit between them.
Each move consists of shorting (or opening), irreversibly, one of
the remaining resistors. Shannon’s machine applies a potential
between the boundaries and selects that resistor which carries the
largest current. Very roughly speaking, this resistor is likely to be
most critical because changing it will have the largest effect on the
resistance of the net and, hence, in the goal direction of shorting
(or opening) the circuit. And although this argument is not perfect,
nor is this a perfect model of the real combinatorial situation, the
machine does play extremely well. For example, if the machine
begins by opening resistor 1, the opponent might counter by 
shorting resistor 4 (which now has the largest current). The
remaining move-pairs (if both players use that strategy)—would
be (5,8) (9,13) (6,3) (12, 10)—or (12, 2)—and the machine wins.
This strategy can make unsound moves in certain situations, but
no one seems to have been able to force this during a game.
[Note: after writing this, I did find such a strategy, that defeats
large-board versions of this machine.]
 
The use of such a global method for problem-selection requires
that the available "difficulty estimates" for related subproblems be
arranged to combine in roughly the manner of resistance values.
Also, we could regard this machine as using an "analog models
for "planning." (See Section IV-D.) [A variety of combinatorial
methods will be matched against the network-analogy opponent in
a program being completed by R. Silver at the MIT Lincoln 
Laboratory.]
 

Local and Hereditary Methods
 
The prospect of having to study at each step the whole problem
structure is discouraging, especially since the structure usually
changes only slightly after each attempt. One naturally looks for
methods which merely update or modify a small fragment of the 
stored record. A variety of compromises lie between the extremes
of the "first-come-first-served" problem-list method and the full
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global-survey methods, techniques. Perhaps the most attractive of 
these are what we will call Inheritance methods —essentially
recursive devices.
 
In an Inheritance method, the effort assigned to a subproblem is
determined only by its immediate ancestry; at the time each
problem is created, it is assigned a certain total quantity Q of time 
or effort. When a problem is later split into subproblems, such
quantities are assigned to them by some local process which
depends only on their relative merits and on what remains of Q.
Thus the centrality problem is managed implicitly. Such schemes
are quite easy to program, especially with the new programming
systems such as IPL [64] and LISP [32], which are themselves 
based on certain hereditary or recursive operations. Special cases
of the inheritance method arise when one can get along with a
simple all-or-none Q— e.g., a "stop condition.’’ This yields the
exploratory method called "back-tracking" by Solomon Golumb
[65]. The decoding procedure of Jack Wozencraft [66] is another
important variety of Inheritance method.
 
In the complex exploration process proposed for chess by Newell,
Shaw, and Simon [49], we have a form of Inheritance method with
a non-numerical stop-condition. Here, the subproblems inherit
sets of goals to be achieved. This teleological control has to be
administered by all additional goal-selection system and is further
complicated by a global (but reasonably simple) stop rule of the
backing-up variety [Section III-C]. (Note: we are identifying here
the move-tree-limitation problem with that of problem-selection.)
Although extensive experimental results are not yet available, we
feel that the scheme of [49] deserves careful study by anyone
planning serious work in this area. It shows only the beginning of 
the complexity sure to come in our development of intelligent
machines. Some further discussion of this question may be found
in Slagle [67].
 

C. "Character-Method" Machines
 
Once a problem is selected, we must decide which method to try
first. This depends on our ability to classify or characterize
problems. We first compute the Character of our problem (by
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using some pattern recognition technique) and then consult a
"Character: -Method" table or other device which is supposed to 
tell us which method(s) are most effective on problems of that
Character. This information might be built up from experience,
given initially by the programmer, deduced from "advice" [70], or
obtained as the solution to some other problem, as suggested in
the GPS proposal [68]. In any case, this part of the machine’s
behavior, regarded from the outside, can be treated as a sort of
stimulus-response, or "table look-up," activity.
If the Characters (or descriptions) have too wide a variety of
values, there will be a serious problem of filling a
Character-Method table. One might then have to reduce the detail
of information, e.g., by using only a few important properties. Thus 
the Differences of GPS [see Section IV-D, 2)] describe no more
than is necessary to define a single goal, and a priority scheme
selects just one of these to characterize the situation. Gelernter
and Rochester [62] suggest using a property-weighting scheme, a
special case of the "Bayes net" described in Section II-G.
 

D. Planning
 
Ordinarily one can solve a complicated problem only by dividing it
into a number of parts, each of which can be attacked by a
smaller search (or be further divided). A successful division will
reduce the search time not by a mere fraction, but by a fractional
exponent. In a graph with 10 branches descending from each
node, a 20-step search might involve 1020 trials, which is out of 
the question, while the insertion of just four lemmas or sequential 

subgoals might reduce the search to only 5*104 trials, which is
within reason for machine exploration. Thus, it will be worth a
relatively enormous effort to find such "islands" in the solution of
complex problems. See section 10 of [6]. Note that even if one 
encountered, say, 106 failures of such procedures before
success, one would still have gained a factor of perhaps 1010 in 
overall trial reduction! Thus practically any ability at all to "plan," or
"analyze," a problem will be profitable, if the problem is difficult. It 
is safe to say that all simple, unitary, notions of how to build an
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intelligent machine will fail, rather sharply, for some modest level
of problem difficulty. Only schemes which actively pursue an
analysis toward obtaining a set of sequential goals can be 
expected to extend smoothly into increasingly complex problem
domains.
 
Perhaps the most straightforward concept of planning is that of
using a simplified model of the problem situation. Suppose that
there is available, for a given problem, some other problem of
"essentially the same character" but with less detail and
complexity. Then we could proceed first to solve the simpler
problem. Suppose, also, that this is done using a second set of 
methods, which are also simpler, but in some correspondence
with those for the original. The solution to the simpler problem can
then be used as a "plan" for the harder one. Perhaps each step
will have to be expanded in detail. But the multiple searches will
add, not multiply, in the total search time. The situation would be
ideal if the model were, mathematically, a homomorphism of the
original. But even without such perfection, the model solution 
should be a valuable guide. In mathematics, one’s proof
procedures usually run along these lines: one first assumes, e.g.,
that integrals and limits always converge, in the planning stage.
Once the outline is completed, ill this simple-minded model of
mathematics, then one goes back to try to "make rigorous" the
steps of the proof, i.e., to replace them by chains of argument 
using genuine rules of inference. And even if the plan fails, it may
be possible to patch it by replacing just a few of its steps.
 
Another aid to planning’ is the semantic, as opposed to the
homomorphic, model [14], [9]. Here we may have an
interpretation of the current problem within another system, not 
necessarily simpler, but with which we are more familiar and for
which we know methods that are more powerful. Thus, in
connection with a plan for the proof of a theorem, we will want to
know whether the proposed lemmas, or islands in the proof, are
actually true. If not, the plan will surely fail. We can often easily tell
if a proposition is true by looking at an interpretation. Thus the
truth of a proposition from plane geometry can be supposed, at
least with great reliability, by actual measurement of a few
constructed drawings (or the analytic geometry equivalent). The
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geometry machine of Gelernter and Rochester [62], [69] uses
such a semantic model with excellent results; it follows closely the
lines proposed in [14].
 
The "Character-Algebra" Model: Planning with the aid of a model
is of the greatest value in reducing search. Can w e construct
machines that find their own models? I believe the following will
provide a general, straightforward way to construct certain kinds 
of useful abstract models. The critical requirement is that we be
able to compile a "Character-Method Matrix" (in addition to the
simple Character-Method table in Section IV-C. The CM matrix is
an array of entries, which predict with some reliability what, will
happen when methods are applied to problems. Both of the matrix
dimensions are indexed by problem Characters; if there is a
method which usually transforms problems of character C, into
problems of character Cj then let the matrix entry Cij be the name 
of that method (or a list of such methods). If there is no such
method, the corresponding entry is null.
 
Now suppose that there is no entry for Cij—meaning that we have
no direct way to transform a problem of type Ci into one of type Cj. 
Multiply the matrix by itself. If the new matrix has a non-null (i, j)
entry then there must be a sequence of two methods which
effects the desired transformation. If that fails, we may try higher 
powers. Note that [if we put unity for the (i, i) terms] we can reach
the 2**2**n matrix power with just n multiplications. We don’t need 
to define the symbolic multiplication operation; one may instead
use arithmetic entries putting unity for any non-null entry and zero
for any null entry in the original matrix. This yields a simple
connection, or flow diagram, matrix, and its nth power tells us 
something about its set of paths of length 2**n. See, e.g., [88].
(Once a non-null entry is discovered, there exist efficient ways to 
find the corresponding sequences of methods. The problem is just
that of finding paths through a maze, and the method of Moore
[71] would be quite efficient. Almost any problem can be
converted into a problem of finding a chain between two terminal
expressions in some formal system.) If the Characters are taken 
to be abstract representations of the problem expressions, this
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"Character-Algebra’’ model can be as abstract as are the 
available pattern-recognition facilities. See [14] and [9].
 
The critical problem in using the Character-Algebra model for
planning is, of course, the prediction-reliability of the matrix
entries. One cannot expect the Character of a result to be strictly
determined by the Character of the original and the method used. 
And the reliability of the predictions will, in any case, deteriorate
rapidly as the matrix power is raised. But, as we have noted, any
plan at all is so much better than none that the system should do
very much better than exhaustive search, even with quite poor
prediction quality.
 
This matrix formulation is obviously only a special case of the
character planning idea. More generally, one will have
descriptions, rather than fixed characters, and one must then
have more general methods to calculate from a description what 
is likely to happen when a method is applied.
 
Characters and Differences: In the GPS (General Problem Solver)
proposal of Newell, Shaw, and Simon [68], [15], we find a slightly
different framework: they use a notion of Difference between two
problems (or expressions) where we speak of the Character of a 
single problem. These views are equivalent if we take our
problems to be links or connections between expressions. But this
notion of Difference (as the Character of a pair) does lend itself
more smoothly to teleological reasoning. For what is the goal
defined by a problem but to reduce the "difference" between the
present state and the desired state? The underlying structure of 
GPS is precisely what we have called a "Character-Method
Ma-chine" in which each kind of Difference is associated in a table
with one or more methods which are known to "reduce" that
Difference. Since the characterization here depends always on 1)
the current problem expression and 2) the desired end result, it is
reasonable to think, as its authors suggest, of GPS as using
"means- end" analysis.
 
To illustrate the use of Differences, we shall review an example
[15]. The problem, in elementary propositional calculus, is to
prove that from S and (not P implies Q) we can deduce (Q or P) 
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and S. The program looks at both at these expressions with a
recursive matching process which branches out from the main 
connectives. The first Difference it encounters is that S occurs on
different sides of the main connective "and". It therefore looks in
the Difference-Method table under the heading ’’change position."
It discovers there a method which uses the theorem (A and B) =(B
and A) which is obviously useful for removing, or "reducing,"
differences of position. GPS applies this method, obtaining (not P 
implies Q) and S. Then GPS asks what is the Difference between
this new expression and the goal. This time the matching
procedure gets down into the connectives inside the left-hand
members and finds a Difference between the connectives
"implies" and "or". It now looks in the C-M table under the heading
"Change Connective" and discovers an appropriate method using
not A implies B = A or B. It applies this method, obtaining (P or Q) 
and S. In the final cycle, the difference-evaluating procedure
discovers the need for a "change position" inside the left member’
and applies a method using (A or B) = (B or A). This completes
the solution of the problem. 
 
Compare this with the "matching,’ process described in [57]. The
notions of "Character," "Character-Algebra," etc., originate in [14]
but seem useful in describing parts of the "GPS’, system of [57]
and [151. Reference [15] contains much additional material we
cannot survey here. Essentially, GPS is to be self-applied to the
problem of discovering sets of Differences appropriate for given
problem areas. This notion of "bootstrapping"—that is, applying a
problem-solving system to the task of improving some of its own
methods—is old and famil1ar, but in [15] we find perhaps the first
specific proposal about how such an advance might be realized.
 
Evidently, the success of this "means-end" analysis in reducing
general search will depend on the degree of specificity that can be
written into the Difference-Method table—basically the same
requirement for an effective Character-Algebra.
 
It may be possible to plan using Differences, as well. Imagine a
"Difference-Algebra" in which the predictions have the form D =
D1D2. One must construct accordingly a difference-factorization
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algebra for discovering longer chains D=D1D2 . . . Dn and 
corresponding method plans. We should note that one cannot
expect to use such planning methods with such primitive
Differences as in [15]. These cannot form good Character
Algebras because (unless their expressions have many levels of
descriptive detail) their matrix powers will swiftly become
degenerate. This degeneracy will ultimately limit the capacity of
any formal planning device.
 
One may think of the general planning heuristic as embodied in a
recursive process of the following form.
Suppose we have a problem P:
 
Form a plan for problem P.
----Select first (next) step of the plan.
------- (If no more steps, exit with "success.")
----Try the suggested method(s):
---------Success: return to try next step in the plan.
---------Failure: return to form new plan, or perhaps change current 
plan to avoid this step.
----Problem judged too difficult: Apply this entire procedure to the 
’sub-’ problem of the current step.
 
Observe that such a program schema is essentially recursive; it
uses itself as a subroutine (explicitly, in the last step) in such a
way that its current state has to be stored, and restored when it
returns control to itself. [This violates, for example, the restrictions
on "DO loops" in programming systems such as FORTRAN.
Convenient techniques for programming such processes were 
developed by Newell, Shaw, and Simon [64]; the program
state-variables are stored in "pushdown lists" and both the
program and the data are stored in the form of "list-structures."
Gelernter [69] extended FORTRAN to manage some of this.
McCarthy has extended these notions in LISP [32] to permit 
explicit recursive definitions of programs in a language based on
recursive functions of symbolic expressions. In LISP, the
management of program-state variables is fully automatic. See
also Orchard-Hays’ article in this issue.]
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In chapters 12 and 13 of [46], Miller, Galanter, and Pribram
discuss possible analogies between human problem solving and
some heuristic planning schemes. It seems certain that, for at
least a few years, there will be a close association between 
theories of human behavior and attempts to increase the
intellectual capacities of machines. But, in the long run, we must
be prepared to discover profitable lines of heuristic programming
which do not deliberately imitate human characteristics.
 
Limitations of space preclude detailed discussion here of theories
of self-organizing neural nets, and other models based on brain
analogies. Several of these are described or cited in [C] and [D].
This omission is not too serious, I feel, in connection with the
subject of heuristic programming, because the motivation and 
methods of the two areas seem so different. Up to the present
time, at least, research on neural-net models has been concerned
mainly with the attempt to show that certain rather simple heuristic
processes e.g., reinforcement learning, or property-list
pattern-recognition, can be realized or evolved by collections of
simple elements without very highly organized interconnections. 
Work on heuristic programming is characterized quite differently
by the search for new, more powerful heuristics for solving very
complex problems, and by very little concern for what hardware
(neuronal or otherwise) would minimally suffice for its realization.
In short, the work on "nets" is concerned with how far one can get
with a small initial endowment; the work on "artificial intelligence’,
is concerned with using all we know to build the most powerful
systems that we can. It is my expectation that, in problem-solving 
power, the (allegedly brain-like) minimal-structure systems will
never threaten to compete with their more deliberately designed
contemporaries, nevertheless, their study should prove profitable
in the development of component elements and subsystems to be
used in the construction of the more systematically conceived 
machines.
 

V. INDUCTION AND MODELS
 

A. Intelligence
 
In all of this discussion we have not come to grips with anything
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we can isolate as "intelligence." We have discussed only
heuristics, shortcuts, and classification techniques. Is there
something missing? I am confident that sooner or later we will be
able to assemble programs of great problem-solving ability from
complex combinations of heuristic devices-multiple optimizers,
pattern-recognition tricks, planning algebras, recursive 
administration procedures, and the like. In no one of these will we
find the seat of intelligence. Should we ask what intelligence
"really is"? My own view is that this is more of an esthetic
question, or one of sense of dignity, than a technical matter! To
me "intelligence" seems to denote little more than the complex of
performances which we happen to respect, but do not
understand. So it is, usually, with the question of "depth" in
mathematics. Once the proof of a theorem is really understood, its
content seems to become trivial. (Still, there may remain a sense
of wonder about how the proof was discovered.)
 
Programmers, too, know that there is never any "heart" in a
program. There are high-level routines in each program, but all
they do is dictate that "if such-and-such, then transfer to
such-and-such a subroutine." And when we look at the low-level
subroutines, which "actually do the work," we find senseless loops
and sequences of trivial operations, merely carrying out the
dictates of their superiors. The intelligence in such a system
seems to be as intangible as becomes the meaning of a single
common word when it is thoughtfully pronounced over and over
again.
 
But we should not let our inability to discern a locus of intelligence
lead us to conclude that programmed computers therefore cannot
think. For it may be so with man, as with machine, that, when we 
understand finally the structure and program, the feeling of
mystery (and self-approbation) will weaken. See [14] and [9]. We
find similar views concerning "creativity" in [60]. The view
expressed by Rosenbloom [73] that minds (or brains) can 
transcend machines is based, apparently, on an erroneous
interpretation of the meaning of the "unsolvability theorems" of
Godel. 
 
On problems of volition we are in general agreement with
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McCulloch [75] that our freedom of will "presumably means no
more than that we can distinguish between what we intend [i.e., 
our plan], and some intervention in our action." See also MacKay
([76] and its references); we are, however, unconvinced by his
eulogization of "analogue" devices. Concerning the "mind-brain"
problem, one should consider the arguments of Craik [77], Hayek
[78] and Pask [79]. Among the active leaders in modern heuristic
programming, perhaps only Samuel [91] has taken a strong
position against the idea of machines thinking. His argument,
based on the fact that reliable computers do only that which they
are instructed to do, has a basic flaw; it does not follow that the
programmer therefore has full knowledge (and therefore full
responsibility and credit for) what will ensue. For certainly the
programmer may set up an evolutionary system whose limitations
are for him unclear and possibly incomprehensible. No better
does the mathematician know all the consequences of a proposed
set of axioms. Surely a machine has to be in order to perform. But
we cannot assign all the credit to its programmer if the operation
of a system comes to reveal structures not recognizable or
anticipated by the programmer. While we have not yet seen much
in the way of intelligent activity in machines, Samuel’s arguments
in [91] (circular in presuming that machines do not have minds) do
not assure us against this. Turing [72] gives a very knowledgeable
discussion of such matters.
 

B. Inductive Inference
 
Let us pose now for our machines, a variety of problems more
challenging than any ordinary game or mathematical puzzle.
Suppose that we want a ma chine which, when embedded for a
time in a complex environment or "universe," will essay to produce
a description of that world-to discover its regularities or laws of 
nature. We might ask it to predict what will happen next. We might
ask it to predict what would be the likely consequences of a
certain action or experiment. Or we might ask it to formulate the
laws governing some class of events. In any case, our task is to
equip our machine with inductive ability-with methods, which it
can use to construct general statements about events beyond its 
recorded experience. Now, there can be no system for inductive
inference that will work well in all possible universes. But given a
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universe, or an ensemble of universes, and a criterion of success,
this (epistemological) problem for machines becomes technical
rather than philosophical. There is quite a literature concerning
this subject, but we shall discuss only one approach which
currently seems to us the most promising; this is what we might 
call the "grammatical induction" schemes of Solomonoff [55], [16],
[17], based partly on work of Chomsky and Miller [80], [81].
 
We will take language to mean the set of expressions formed from 
some given set of primitive symbols or expressions, by the
repeated application of some given set of rules; the primitive
expressions plus the rules is the grammar of the language. Most
induction problems can be framed as problems in the discovery of 
grammars. Suppose, for instance, that a machine’s prior
experience is summarized by a large collection of statements, 
some labeled "good" and some ’bad" by some critical device. How
could we generate selectively more good statements? The trick is
to find some relatively simple (formal) language in which the good
statements are grammatical, and in which the bad ones are not.
Given such a language, we can use it to generate more
statements, and presumably these will tend to be more like the 
good ones. The heuristic argument is that if we can find a
relatively simple way to separate the two sets, the discovered rule
is likely to be useful beyond the immediate experience. If the
extension fails to be consistent with new data, one might be able
to make small changes in the rules and, generally, one may be
able to use many ordinary problem-solving methods for this task.
 
The problem of finding an efficient grammar is much the same as
that of finding efficient encodings, or programs, for machines; in 
each case, one needs to discover the important regularities in the
data, and exploit the regularities by making shrewd abbreviations.
The possible importance of Solomonoff’s work [18] is that it may
point the way toward systematic mathematical ways to explore
this discovery problem. He considers the class of all programs (for
a given general-purpose computer) which will produce a certain
given output (the body of data in question). Most such programs,
if allowed to continue, will add to that body of data. By properly
weighting these programs, perhaps by length, we can obtain
corresponding weights for the different possible continuations, 
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and thus a basis for prediction. If this prediction is to be of any
interest, it will be necessary to show some independence of the
given computer; it is not yet clear precisely what form such a
result will take.
 

C. Models of Oneself
 
If a creature can answer a question about a hypothetical
experiment, without actually performing that experiment, then the
answer must have been obtained from some submachine inside
the creature. The output of that submachine (representing a
correct answer) as well as the input (representing the question)
must be coded descriptions of the corresponding external events
or event classes. Seen through this pair of encoding and decoding
channels, the internal submachine acts like the environment, and
so it has the character of a "model." The inductive inference
problem may then be regarded as the problem of constructing 
such a model.
 
To the extent that the creature’s actions affect the environment,
this internal model of the world will need to include some
representation of the creature itself. If one asks the creature "why
did you decide to do such and such" (or if it asks this of itself), any
answer must come from the internal model. Thus the evidence of
introspection itself is liable to be based ultimately on the
processes used in constructing one’s image of one’s self.
Speculation on the form of such a model leads to the amusing
prediction that intelligent machines may be reluctant to believe
that they are just machines. The argument is this: our own
self-models have a substantially "dual" character; there is a part
concerned with the physical or mechanical environment (that is,
with the behavior of inanimate objects)—and there is a part
concerned with social and psychological matters. It is precisely
because we have not yet developed a satisfactory mechanical
theory of mental activity that we have to keep these areas apart.
We could not give up this division even if we wished to—until we
find a unified model to replace it.
 
Now, when we ask such a creature what sort of being it is, it
cannot simply answer "directly." It must inspect its model(s). And it
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must answer by saying that it seems to be a dual thing-which
appears to have two parts-a "mind" and a "body." Thus, even the
robot, unless equipped with a satisfactory theory of artificial
intelligence, would have to maintain a dualistic opinion on this
matter.
 
There is a certain problem of infinite regression in the notion of a
machine having a good model of itself: of course, the nested
models must lose detail and finally vanish. But the argument, e.g.,
of Hayek (See 8.69 and 8.79 of [78]) —that we cannot "fully
comprehend the unitary order" (of our own minds)— ignores the
power of recursive description. In particular, it overlooks Turing’s
demonstration that (with sufficient external writing space) a
"general-purpose" machine can answer any question about a
description of itself that any larger machine could answer.
 

CONCLUSION
 
In attempting to combine a survey of work on "artificial
intelligence" with a summary of our own views, we could not
mention every relevant project and publication. Some important
omissions are in the area of ’brain models"; the early work of
Belmont Farley and Wesley Clark [92] (also Farley’s paper in [D], 
often unknowingly duplicated, and the work of Nathaniel
Rochester [82] and Peter Milner [D].) The work of Jerome Lettvin,
et al. [83] is related to the theories in [19]. We did not touch at all
on the problems of logic and language, and of information
retrieval, which must be faced when action is to be based on the
contents of large memories; see, e.g., John McCarthy [701. We
have not discussed the basic results in mathematical logic that
bear on the question of what can be done by machines. There are
entire literatures we have hardly even sampled-the bold
pioneering of Nicholas Rashevsky (c. 1929) and his later
co-workers [95]; Theories of Learning, e.g., Saul Gorn [84]; 
Theory of Games, e.g., Martin Shubik [85]; and Psychology, e.g.,
Jerome Bruner, et al. [861. And everyone should know the work of
George Polya [87] on how to solve problems. We can hope only
to have transmitted the flavor of some of the more ambitious
projects directly concerned with getting machines to take over a 
larger portion of problem-solving tasks.
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One last remark: we have discussed here only work concerned
with more or less self-contained problem solving programs. But as
this is written, we are at last beginning to see vigorous activity in
the direction of constructing usable time-sharing or
multiprogramming computing systems. With these systems, it will
at last become economical to match human beings in real time
with really large machines. This means that we can work toward
programming what will be, in effect, "thinking aids." In the years to
come, we expect that these man-machine systems will share, and 
perhaps for a time be dominant, in our advance toward the
development of "artificial intelligence."
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