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Abstract

It is proved that
lim inf
n→∞

(pn+1 − pn) < 7× 107,

where pn is the n-th prime.
Our method is a refinement of the recent work of Goldston, Pintz and Yildirim on the small

gaps between consecutive primes. A major ingredient of the proof is a stronger version of the
Bombieri-Vinogradov theorem that is applicable when the moduli are free from large prime
divisors only (see Theorem 2 below), but it is adequate for our purpose.
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1. Introduction

Let pn denote the n-th prime. It is conjectured that

lim inf
n→∞

(pn+1 − pn) = 2.

While a proof of this conjecture seems to be out of reach by present methods, recently
Goldston, Pintz and Yildirim [6] have made significant progress toward the weaker con-
jecture

lim inf
n→∞

(pn+1 − pn) <∞. (1.1)

In particular, they prove that if the primes have level of distribution ϑ = 1/2 +$ for an
(arbitrarily small) $ > 0, then (1.1) will be valid (see [6, Theorem 1]). Since the result
ϑ = 1/2 is known (the Bombieri-Vinogradov theorem), the gap between their result and
(1.1) would appear to be, as said in [6], within a hair’s breadth. Until very recently, the
best result on the small gaps between consecutive primes was due to Goldston, Pintz and
Yildirim [7] that gives

lim inf
n→∞

pn+1 − pn√
log pn(log log pn)2

<∞. (1.2)

One may ask whether the methods in [6], combined with the ideas in Bombieri, Fried-
lander and Iwaniec [1]-[3] which are employed to derive some stronger versions of the
Bombieri- Vinogradov theorem, would be good enough for proving (1.1) (see Question 1
on [6, p.822]).

In this paper we give an affirmative answer to the above question. We adopt the
following notation of [6]. Let

H = {h1, h2, ..., hk0} (1.3)

be a set composed of distinct non-negative integers. We say that H is admissible if
νp(H) < p for every prime p, where νp(H) denotes the number of distinct residue classes
modulo p occupied by the hi.

Theorem 1. Suppose that H is admissible with k0 ≥ 3.5 × 106. Then there are
infinitely many positive integers n such that the k0-tuple

{n+ h1, n+ h2, ..., n+ hk0} (1.4)

contains at least two primes. Consequently, we have

lim inf
n→∞

(pn+1 − pn) < 7× 107. (1.5)

The bound (1.5) results from the fact that the set H is admissible if it is composed of
k0 distinct primes, each of which is greater than k0, and the inequality

π(7× 107)− π(3.5× 106) > 3.5× 106.
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This result is, of course, not optimal. The condition k0 ≥ 3.5 × 106 is also crude and
there are certain ways to relax it. To replace the right side of (1.5) by a value as small as
possible is an open problem that will not be discussed in this paper.

2. Notation and sketch of the proof

Notation
p −a prime number.
a, b, c, h, k, l, m −integers.
d, n, q, r −positive integers.
Λ(q) −the von Mangoldt function.
τj(q) −the divisor function, τ2(q) = τ(q).
ϕ(q) −the Euler function.
µ(q) −the Möbius function.
x −a large number.
L = log x.
y, z −real variables.
e(y) = exp{2πiy}.
eq(y) = e(y/q).
||y|| −the distance from y to the nearest integer.
m ≡ a(q) −means m ≡ a(mod q).
c̄/d −means a/d(mod 1) where ac ≡ 1(mod d).
q ∼ Q −means Q ≤ q < 2Q.
ε −any sufficiently small, positive constant, not necessarily the same in each occur-

rence.
B −some positive constant, not necessarily the same in each occurrence.
A −any sufficiently large, positive constant, not necessarily the same in each occur-

rence.
η = 1 + L−2A.
κN −the characteristic function of [N, ηN) ∩ Z.∑∗

l( mod q)
−a summation over reduced residue classes l(mod q).

Cq(a) −the Ramanujan sum
∑∗

l( mod q)
eq(la).

We adopt the following conventions throughout our presentation. The set H given by
(1.3) is assumed to be admissible and fixed. We write νp for νp(H); similar abbreviations
will be used in the sequel. Every quantity depending on H alone is regarded as a constant.
For example, the absolutely convergent product

S =
∏
p

(
1− νp

p

)(
1− 1

p

)−k0
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is a constant. A statement is valid for any sufficiently small ε and for any sufficiently large
A whenever they are involved. The meanings of “sufficiently small” and “sufficiently large”
may vary from one line to the next. Constants implied in O or �, unless specified, will
depend on H, ε and A at most.

We first recall the underlying idea in the proof of [6, Theorem 1] which consists in
evaluating and comparing the sums

S1 =
∑
n∼x

λ(n)2 (2.1)

and

S2 =
∑
n∼x

( k0∑
i=1

θ(n+ hi)

)
λ(n)2, (2.2)

where λ(n) is a real function depending on H and x, and

θ(n) =

{
log n if n is prime,

0 otherwise.

The key point is to prove, with an appropriate choice of λ, that

S2 − (log 3x)S1 > 0. (2.3)

This implies, for sufficiently large x, that there is a n ∼ x such that the tuple (1.4)
contains at least two primes.

In [6] the function λ(n) mainly takes the form

λ(n) =
1

(k0 + l0)!

∑
d|P (n)
d≤D

µ(d)

(
log

D

d

)k0+l0

, l0 > 0, (2.4)

where D is a power of x and

P (n) =

k0∏
j=1

(n+ hj).

Let

∆(γ; d, c) =
∑
n∼x
n≡c(d)

γ(n)− 1

ϕ(d)

∑
n∼x

(n,d)=1

γ(n) for (d, c) = 1,

and

Ci(d) = {c : 1 ≤ c ≤ d, (c, d) = 1, P (c− hi) ≡ 0(mod d)} for 1 ≤ i ≤ k0.
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The evaluations of S1 and S2 lead to a relation of the form

S2 − (log 3x)S1 = (k0T ∗2 − LT ∗1 )x+O(xLk0+2l0) +O(E)

for D < x1/2−ε, where T ∗1 and T ∗2 are certain arithmetic sums (see Lemma 1 below), and

E =
∑

1≤i≤k0

∑
d<D2

|µ(d)|τ3(d)τk0−1(d)
∑
c∈Ci(d)

|∆(θ; d, c)|.

Let $ > 0 be a small constant. If
D = x1/4+$ (2.5)

and k0 is sufficiently large in terms of $, then, with an appropriate choice of l0, one can
prove that

k0T ∗2 − LT ∗1 � Lk0+2l0+1. (2.6)

In this situation the error E can be efficiently bounded if the primes have level of distri-
bution ϑ > 1/2 + 2$, but one is unable to prove it by present methods. On the other
hand, for D = x1/4−ε, the Bombieri-Vinogradov theorem is good enough for bounding E ,
but the relation (2.6) can not be valid, even if a more general form of λ(n) is considered
(see Soundararajan [12]).

Our first observation is that, in the sums T ∗1 and T ∗2 , the contributions from the terms
with d having a large prime divisor are relatively small. Thus, if we impose the constraint
d|P in (2.4), where P is the product of the primes less than a small power of x, the
resulting main term is still � Lk0+2l0+1 with D given by (2.5).

Our second observation, which is the most novel part of the proof, is that with D
given by (2.5) and with the constraint d|P imposed in (2.4), the resulting error∑

1≤i≤k0

∑
d<D2

d|P

τ3(d)τk0−1(d)
∑
c∈Ci(d)

|∆(θ; d, c)| (2.7)

can be efficiently bounded. This is originally due to the simple fact that if d|P and d is
not too small, say d > x1/2−ε, then d can be factored as

d = rq (2.8)

with the range for r flexibly chosen (see Lemma 4 below). Thus, roughly speaking, the
characteristic function of the set {d : x1/2−ε < d < D2, d|P} may be treated as a well
factorable function (see Iwaniec [10]). The factorization (2.8) is crucial for bounding the
error terms.

It suffices to prove Theorem 1 with

k0 = 3.5× 106
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which is henceforth assumed. Let D be as in (2.5) with

$ =
1

1168
.

Let g(y) be given by

g(y) =
1

(k0 + l0)!

(
log

D

y

)k0+l0

if y < D,

and
g(y) = 0 if y ≥ D,

where
l0 = 180.

Write
D1 = x$, P =

∏
p<D1

p, (2.9)

D0 = exp{L1/k0}, P0 =
∏
p≤D0

p. (2.10)

In the case d|P and d is not too small, the factor q in (2.8) may be chosen such that
(q,P0) = 1. This will considerably simplify the argument.

We choose
λ(n) =

∑
d|(P (n),P)

µ(d)g(d). (2.11)

In the proof of Theorem 1, the main terms are not difficult to handle, since we deal
with a fixedH. This is quite different from [6] and [7], in which various setsH are involved
in the argument to derive results like (1.2).

By Cauchy’s inequality, the error (2.7) is efficiently bounded via the following

Theorem 2. For 1 ≤ i ≤ k0 we have∑
d<D2

d|P

∑
c∈Ci(d)

|∆(θ; d, c)| � xL−A. (2.12)

The proof of Theorem 2 is described as follows. First, applying combinatorial argu-
ments (see Lemma 6 below), we reduce the proof to estimating the sum of |∆(γ; d, c)|
with certain Dirichlet convolutions γ. There are three types of the convolutions involved
in the argument. Write

x1 = x3/8+8$, x2 = x1/2−4$. (2.13)

In the first two types the function γ is of the form γ = α ∗β such that the following hold.
(A1) α = (α(m)) is supported on [M, ηj1M), j1 ≤ 19, α(m)� τj1(m)L.
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(A2) β = (β(n)) is supported on [N, ηj2N), j2 ≤ 19, β(n)� τj2(n)L,
x1 < N < 2x1/2. For any q, r and a satisfying (a, r) = 1, the following ”Siegel-Walfisz”
assumption is satisfied.∑

n≡a(r)
(n,q)=1

β(n)− 1

ϕ(r)

∑
(n,qr)=1

β(n)� τ20(q)NL−200A.

(A3) j1 + j2 ≤ 20, [MN, η20MN) ⊂ [x, 2x).

We say that γ is of Type I if x1 < N ≤ x2; we say that γ is of Type II if x2 < N < 2x1/2.
In the Type I and II estimates we combine the dispersion method in [1] with the

factorization (2.8) (here r is close to N in the logarithmic scale). Due to the fact that
the modulo d is at most slightly greater than x1/2 in the logarithmic scale, after reducing
the problem to estimating certain incomplete Kloosterman sums, we need only to save a
small power of x from the trivial estimates; a variant of Weil’s bound for Kloosterman
sums (see Lemma 11 below) will fulfill it. Here the condition N > x1, which may be
slightly relaxed, is essential.

We say that γ is of Type III if it is of the form γ = α ∗ κN1 ∗ κN2 ∗ κN3 such that α
satisfies (A1) with j1 ≤ 17, and such that the following hold.

(A4) N3 ≤ N2 ≤ N1, MN1 ≤ x1.
(A5) [MN1N2N3, η

20MN1N2N3) ⊂ [x, 2x).

The Type III estimate essentially relies on the Birch-Bombieri result in the appendix
to [5] (see Lemma 12 below), which is employed by Friedlander and Iwaniec [5] and by
Heath-Brown [9] to study the distribution of τ3(n) in arithmetic progressions. This result
in turn relies on Deligne’s proof of the Riemann Hypothesis for varieties over finite fields
(the Weil Conjecture) [4]. We estimate each ∆(γ; d, c) directly. However, if one applies
the method in [5] alone, efficient estimates will be valid only for MN1 � x3/8−5$/2−ε.
Our argument is carried out by combining the method in [5] with the factorization (2.8)
( here r is relatively small); the latter will allow us to save a factor r1/2.

In our presentation, all the α(m) and β(n) are real numbers.

3. Lemmas

In this section we introduce a number of prerequisite results, some of which are quoted
from the literature directly. Results given here may not be in the strongest forms, but
they are adequate for the proofs of Theorem 1 and Theorem 2.

Lemma 1. Let %1(d) and %2(d) be the multiplicative functions supported on square-free
integers such that

%1(p) = νp, %2(p) = νp − 1.
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Let

T ∗1 =
∑
d0

∑
d1

∑
d2

µ(d1d2)%1(d0d1d2)

d0d1d2

g(d0d1)g(d0d2)

and

T ∗2 =
∑
d0

∑
d1

∑
d2

µ(d1d2)%2(d0d1d2)

ϕ(d0d1d2)
g(d0d1)g(d0d2).

We have

T ∗1 =
1

(k0 + 2l0)!

(
2l0
l0

)
S(logD)k0+2l0 + o(Lk0+2l0) (3.1)

and

T ∗2 =
1

(k0 + 2l0 + 1)!

(
2l0 + 2

l0 + 1

)
S(logD)k0+2l0+1 + o(Lk0+2l0+1). (3.2)

Proof. The sum T ∗1 is the same as the sum TR(l1, l2;H1,H2) in [6, (7.6)] with

H1 = H2 = H (k1 = k2 = k0), l1 = l2 = l0, R = D,

so (3.1) follows from [6, Lemma 3]; the sum T ∗2 is the same as the sum T̃R(l1, l2;H1,H2, h0)
in [6, (9.12)] with

H1 = H2 = H, l1 = l2 = l0, h0 ∈ H, R = D,

so (3.2) also follows from [6, Lemma 3]. 2

Remark. A generalization of this lemma can be found in [12].

Lemma 2. Let

A1(d) =
∑

(r,d)=1

µ(r)%1(r)

r
g(dr)

and

A2(d) =
∑

(r,d)=1

µ(r)%2(r)

ϕ(r)
g(dr).

Suppose that d < D and |µ(d)| = 1. Then we have

A1(d) =
ϑ1(d)

l0!
S

(
log

D

d

)l0
+O(Ll0−1+ε) (3.3)

and

A2(d) =
ϑ2(d)

(l0 + 1)!
S

(
log

D

d

)l0+1

+O(Ll0+ε), (3.4)

where ϑ1(d) and ϑ2(d) are the multiplicative functions supported on square-free integers
such that

ϑ1(p) =

(
1− νp

p

)−1

, ϑ2(p) =

(
1− νp − 1

p− 1

)−1

.
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Proof. Recall that D0 is given by (2.10). Since %1(r) ≤ τk0(r), we have trivially

A1(d)� 1 +
(

log(D/d)
)2k0+l0 ,

so we may assume D/d > exp{(logD0)2} without loss of generality. Write s = σ+ it. For
σ > 0 we have ∑

(r,d)=1

µ(r)%1(r)

r1+s
= ϑ1(d, s)G1(s)ζ(1 + s)−k0

where

ϑ1(d, s) =
∏
p|d

(
1− νp

p1+s

)−1

, G1(s) =
∏
p

(
1− νp

p1+s

)(
1− 1

p1+s

)−k0
.

It follows that

A1(d) =
1

2πi

∫
(1/L)

ϑ1(d, s)G1(s)

ζ(1 + s)k0
(D/d)s ds

sk0+l0+1
.

Note that G1(s) is analytic and bounded for σ ≥ −1/3. We split the line of integration
into two parts according to |t| ≤ D0 and |t| > D0. By a well-known result on the zero-free
region for ζ(s), we can move the line segment {σ = 1/L, |t| ≤ D0} to{

σ = −κ(logD0)−1, |t| ≤ D0

}
,

where κ > 0 is a certain constant, and apply some standard estimates to deduce that

A1(d) =
1

2πi

∫
|s|=1/L

ϑ1(d, s)G1(s)

ζ(1 + s)k0
(D/d)s ds

sk0+l0+1
+O(L−A).

Note that ϑ1(d, 0) = ϑ1(d) and

ϑ1(d, s)− ϑ1(d) = ϑ1(d, s)ϑ1(d)
∑
l|d

µ(l)%1(l)

l
(1− l−s).

If |s| ≤ 1/L, then ϑ1(d, s)� (logL)B, so that, by trivial estimation,

ϑ1(d, s)− ϑ1(d)� Lε−1.

On the other hand, by Cauchy’s integral formula, for |s| ≤ 1/L we have

G1(s)−S� 1/L.

It follows that

1

2πi

∫
|s|=1/L

ϑ1(d, s)G1(s)

ζ(1 + s)k0
(D/d)s ds

sk0+l0+1
− 1

2πi
ϑ1(d)S

∫
|s|=1/L

(D/d)s ds

sl0+1
� Ll0−1+ε.
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This leads to (3.3).
The proof of (3.4) is analogous. We have only to note that

A2(d) =
1

2πi

∫
(1/L)

ϑ2(d, s)G2(s)

ζ(1 + s)k0−1

(D/d)s ds

sk0+l0+1

with

ϑ2(d, s) =
∏
p|d

(
1− νp − 1

(p− 1)ps

)−1

, G2(s) =
∏
p

(
1− νp − 1

(p− 1)ps

)(
1− 1

p1+s

)1−k0
,

and G2(0) = S. 2

Lemma 3. We have∑
d<x1/4

%1(d)ϑ1(d)

d
=

(1 + 4$)−k0

k0!
S−1(logD)k0 +O(Lk0−1) (3.5)

and ∑
d<x1/4

%2(d)ϑ2(d)

ϕ(d)
=

(1 + 4$)1−k0

(k0 − 1)!
S−1(logD)k0−1 +O(Lk0−2), (3.6)

Proof. Noting that ϑ1(p)/p = 1/(p− νp), for σ > 0 we have

∞∑
d=1

%1(d)ϑ1(d)

d1+s
= B1(s)ζ(1 + s)k0 ,

where

B1(s) =
∏
p

(
1 +

νp
(p− νp)ps

)(
1− 1

p1+s

)k0
.

Hence, by Perron’s formula,∑
d<x1/4

%1(d)ϑ1(d)

d
=

1

2πi

∫ 1/L+iD0

1/L−iD0

B1(s)ζ(1 + s)k0xs/4

s
ds+O(D−1

0 LB).

Note that B1(s) is analytic and bounded for σ ≥ −1/3. Moving the path of integration
to [−1/3− iD0,−1/3 + iD0], we see that the right side above is equal to

1

2πi

∫
|s|=1/L

B1(s)ζ(1 + s)k0xs/4

s
ds+O(D−1

0 LB).

Since, by Cauchy’s integral formula, B1(s)−B1(0)� 1/L for |s| = 1/L, and

B1(0) =
∏
p

(
p

p− νp

)(
1− 1

p

)k0
= S−1,
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it follows that ∑
d<x1/4

%1(d)ϑ1(d)

d
=

1

k0!
S−1

(
L
4

)k0
+O(Lk0−1).

This leads to (3.5) since L/4 = (1 + 4$)−1 logD by (2.5).
The proof of (3.6) is analogous. We have only to note that, for σ > 0,

∞∑
d=1

%2(d)ϑ2(d)

ϕ(d)ps
= B2(s)ζ(1 + s)k0−1

with

B2(s) =
∏
p

(
1 +

νp − 1

(p− νp)ps

)(
1− 1

p1+s

)k0−1

,

and B2(0) = S−1. 2

Recall that D1 and P are given by (2.9), and P0 is given by (2.10).

Lemma 4. Suppose that d > D2
1, d|P and (d,P0) < D1. For any R∗ satisfying

D2
1 < R∗ < d, (3.7)

there is a factorization d = rq such that D−1
1 R∗ < r < R∗ and (q,P0) = 1.

Proof. Since d is square-free and d/(d,P0) > D1, we may write d/(d,P0) as

d

(d,P0)
=

n∏
j=1

pj with D0 < p1 < p2 < ... < pn < D1, n ≥ 2.

By (3.7), there is a n′ < n such that

(d,P0)
n′∏
j=1

pj < R∗ and (d,P0)
n′+1∏
j=1

pj ≥ R∗.

The assertion follows by choosing

r = (d,P0)
n′∏
j=1

pj, q =
n∏

j=n′+1

pj,

and noting that r ≥ (1/pn′+1)R∗. 2

Lemma 5. Suppose that 1 ≤ i ≤ k0 and |µ(qr)| = 1. There is a bijection

Ci(qr)→ Ci(r)× Ci(q), c 7→ (a, b)
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such that c(mod qr) is a common solution to c ≡ a(mod r) and c ≡ b(mod q).

Proof. By the Chinese remainder theorem. 2

The next lemma is a special case of the combinatorial identity due to Heath-Brown[8].

Lemma 6 Suppose that x1/10 ≤ x∗ < ηx1/10. For n < 2x we have

Λ(n) =
10∑
j=1

(−1)j−1

(
10

j

) ∑
m1,...,mj≤x∗

µ(m1)...µ(mj)
∑

n1...njm1...mj=n

log n1.

The next lemma is a truncated Poisson formula.

Lemma 7 Suppose that η ≤ η∗ ≤ η19 and x1/4 < M < x2/3. Let f be a function of
C∞(−∞,∞) class such that 0 ≤ f(y) ≤ 1,

f(y) = 1 if M ≤ y ≤ η∗M,

f(y) = 0 if y /∈ [(1−M−ε)M, (1 +M−ε)η∗M ],

and
f (j)(y)�M−j(1−ε), j ≥ 1,

the implied constant depending on ε and j at most. Then we have∑
m≡a(d)

f(m) =
1

d

∑
|h|<H

f̂(h/d)ed(−ah) +O(x−2)

for any H ≥ dM−1+2ε, where f̂ is the Fourier transform of f , i.e.,

f̂(z) =

∫ ∞
−∞

f(y)e(yz) dy.

Lemma 8. Suppose that 1 ≤ N < N ′ < 2x, N ′ − N > xεd and (c, d) = 1. Then for
j, ν ≥ 1 we have ∑

N≤n≤N ′
n≡c(d)

τj(n)ν � N ′ −N
ϕ(d)

Ljν−1,

the implied constant depending on ε, j and ν at most.

Proof. See [11, Theorem 1]. 2

The next lemma is (essentially) contained in the proof of [5, Theorem 4].

Lemma 9 Suppose that H,N ≥ 2, d > H and (c, d) = 1. Then we have∑
n≤N

(n,d)=1

min
{
H, ||cn̄/d||−1

}
� (dN)ε(H +N). (3.8)
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Proof. We may assume N ≥ H without loss of generality. Write {y} = y − [y] and
assume ξ ∈ [1/H, 1/2]. Note that {cn̄/d} ≤ ξ if and only if bn ≡ c(mod d) for some
b ∈ (0, dξ], and 1− ξ ≤ {cn̄/d} if and only if bn ≡ −c(mod d) for some b ∈ (0, dξ], Thus,
the number of the n satisfying n ≤ N , (n, d) = 1 and ||cn̄/d|| ≤ ξ is bounded by∑

q≤dNξ
q≡±c(d)

τ(q)� dεN1+εξ.

Hence, for any interval I of the form

I = (0, 1/H], I = [1− 1/H, 1), I = [ξ, ξ′] or I = [1− ξ′, 1− ξ]

with 1/H ≤ ξ < ξ′ ≤ 1/2, ξ′ ≤ 2ξ, the contribution from the terms on the left side of
(3.8) with {cn̄/d} ∈ I is � dεN1+ε. This completes the proof. 2

Lemma 10. Suppose that β = (β(n)) satisfies (A2) and R ≤ x−εN . Then for any q
we have ∑

r∼R

%2(r)
∑∗

l( mod r)

∣∣∣∣ ∑
n≡l(r)
(n,q)=1

β(n)− 1

ϕ(r)

∑
(n,qr)=1

β(n)

∣∣∣∣2 � τ(q)BN2L−100A.

Proof. Since the inner sum is � ϕ(r)−1N2LB by Lemma 8, the assertion follows by
Cauchy’s inequality and [1, Theorem 0]. 2

Lemma 11 Suppose that N ≥ 1, d1d2 > 10 and |µ(d1)| = |µ(d2)| = 1. Then we have,
for any c1, c2 and l,

∑
n≤N

(n,d1)=1
(n+l,d2)=1

e

(
c1n̄

d1

+
c2(n+ l)

d2

)
� (d1d2)1/2+ε +

(c1, d1)(c2, d2)(d1, d2)2N

d1d2

. (3.9)

Proof. Write d0 = (d1, d2), t1 = d1/d0, t2 = d2/d0 and d = d0t1t2. Let

K(d1, c1; d2, c2; l,m) =
∑
n≤d

(n,d1)=1
(n+l,d2)=1

e

(
c1n̄

d1

+
c2(n+ l)

d2

+
mn

d

)
.

We claim that
|K(d1, c1; d2, c2; l,m)| ≤ d0|S(m, b1; t1)S(m, b2; t2)| (3.10)

for some b1 and b2 satisfying
(bi, ti) ≤ (ci, di), (3.11)

13



where S(m, b; t) denotes the ordinary Kloosterman sum.
Note that d0, t1 and t2 are pairwise coprime. Assume that

n ≡ t1t2n0 + d0t2n1 + d0t1n2 (mod d)

and
l ≡ t1t2l0 + d0t1l2 (mod d2).

The conditions (n, d1) = 1 and (n+ l, d2) = 1 are equivalent to

(n0, d0) = (n1, t1) = 1 and (n0 + l0, d0) = (n2 + l2, t2) = 1

respectively. Letting ai(mod d0), bi(mod ti), i = 1, 2 be given by

a1t
2
1t2 ≡ c1(mod d0), a2t1t

2
2 ≡ c2(mod d0),

b1d
2
0t2 ≡ c1(mod t1), b2d

2
0t1 ≡ c2(mod t2),

so that (3.11) holds, by the relation

1

di
≡ t̄i
d0

+
d̄0

ti
(mod 1)

we have

c1n̄

d1

+
c2(n+ l)

d2

≡ a1n̄0 + a2(n0 + l0)

d0

+
b1n̄1

t1
+
b2(n2 + l2)

t2
(mod 1).

Hence,

c1n̄

d1

+
c2(n+ l)

d2

+
mn

d

≡a1n̄0 + a2(n0 + l0) +mn0

d0

+
b1n̄1 +mn1

t1
+
b2(n2 + l2) +m(n2 + l2)

t2
− ml2

t2
(mod 1).

From this we deduce, by the Chinese remainder theorem, that

K(d1, c1; d2, c2; l,m) = et2(−ml2)S(m, b1; t1)S(m, b2; t2)
∑
n≤d0

(n,d0)=1
(n+l0,d0)=1

ed0
(
a1n̄+ a2(n+ l0) +mn

)
,

whence (3.10) follows.
By (3.10) with m = 0 and (3.11), for any k > 0 we have∣∣∣∣ ∑

k≤n<k+d
(n,d1=1

(n+l,d2)=1

e

(
c1n̄

d1

+
c2(n+ l)

d2

)∣∣∣∣ ≤ (c1, d1)(c2, d2)d0.

14



It now suffices to prove (3.9) on assuming N ≤ d−1. By standard Fourier techniques,
the left side of (3.9) may be rewritten as∑

−∞<m<∞

u(m)K(d1, c1; d2, c2; l,m)

with

u(m)� min

{
N

d
,

1

|m|
,
d

m2

}
. (3.12)

By (3.10) and Weil’s bound for Kloosterman sums, we find that the left side of (3.9) is

� d0

(
|u(0)|(b1, t1)(b2, t2) + (t1t2)1/2+ε

∑
m 6=0

|u(m)|(m, b1, t1)1/2(m, b2, t2)1/2

)
.

This leads to (3.9) by (3.12) and (3.11). 2

Remark. In the case d2 = 1, (3.9) becomes∑
n≤N

(n,d1)=1

ed1(c1n̄)� d
1/2+ε
1 +

(c1, d1)N

d1

. (3.13)

This estimate is well-known (see [2, Lemma 6], for example), and it will find application
somewhere.

Lemma 12. Let

T (k;m1,m2; q) =
∑′

l( mod q)

∑∗

t1( mod q)

∑∗

t2( mod q)

eq
(
l̄t1 − (l + k)t2 +m1t̄1 −m2t̄2

)
,

where
∑′

is restriction to (l(l+ k), q) = 1. Suppose that q is square-free. Then we have

T (k;m1,m2; q)� (k, q)1/2q3/2+ε.

Proof. By [5, (1.26)], it suffices to show that

T (k;m1,m2; p)� (k, p)1/2p3/2.

In the case k 6≡ 0(mod p), this follows from the Birch-Bombieri result in the appendix
to [5] (the proof is straightforward if m1m2 ≡ 0(mod p)); in the case k ≡ 0(mod p), this
follows from Weil’s bound for Kloosterman sums. 2
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4. Upper bound for S1

Recall that S1 is given by (2.1) and λ(n) is given by (2.11). The aim of this section is
to establish an upper bound for S1 (see (4.20) below).

Changing the order of summation we obtain

S1 =
∑
d1|P

∑
d2|P

µ(d1)g(d1)µ(d2)g(d2)
∑
n∼x

P (n)≡0([d1,d2])

1.

By the Chinese remainder theorem, for any square-free d, there are exactly %1(d) distinct
residue classes (mod d) such that P (n) ≡ 0(mod d) if and only if n lies in one of these
classes, so the innermost sum above is equal to

%1([d1, d2])

[d1, d2]
x+O(%1([d1, d2])).

It follows that
S1 = T1x+O(D2+ε), (4.1)

where

T1 =
∑
d1|P

∑
d2|P

µ(d1)g(d1)µ(d2)g(d2)

[d1, d2]
%1([d1, d2]).

Note that %1(d) is supported on square-free integers. Substituting d0 = (d1, d2) and
rewriting d1 and d2 for d1/d0 and d2/d0 respectively, we deduce that

T1 =
∑
d0|P

∑
d1|P

∑
d2|P

µ(d1d2)%1(d0d1d2)

d0d1d2

g(d0d1)g(d0d2). (4.2)

We need to estimate the difference T1 − T ∗1 . We have

T ∗1 = Σ1 + Σ31,

where

Σ1 =
∑

d0≤x1/4

∑
d1

∑
d2

µ(d1d2)%1(d0d1d2)

d0d1d2

g(d0d1)g(d0d2),

Σ31 =
∑

x1/4<d0<D

∑
d1

∑
d2

µ(d1d2)%1(d0d1d2)

d0d1d2

g(d0d1)g(d0d2).

In the case d0 > x1/4, d0d1 < D, d0d2 < D and |µ(d1d2)| = 1, the conditions di|P , i = 1, 2
are redundant. Hence,

T1 = Σ2 + Σ32,
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where

Σ2 =
∑

d0≤x1/4

d0|P

∑
d1|P

∑
d2|P

µ(d1d2)%1(d0d1d2)

d0d1d2

g(d0d1)g(d0d2),

Σ32 =
∑

x1/4<d0<D
d0|P

∑
d1

∑
d2

µ(d1d2)%1(d0d1d2)

d0d1d2

g(d0d1)g(d0d2).

It follows that
|T1 − T ∗1 | ≤ |Σ1|+ |Σ2|+ |Σ3|, (4.3)

where

Σ3 =
∑

x1/4<d0<D
d0-P

∑
d1

∑
d2

µ(d1d2)%1(d0d1d2)

d0d1d2

g(d0d1)g(d0d2).

First we estimate Σ1. By Möbius inversion, the inner sum over d1 and d2 in Σ1 is
equal to

%1(d0)

d0

∑
(d1,d0)=1

∑
(d2,d0)=1

µ(d1)%1(d1)µ(d2)%1(d2)

d1d2

g(d0d1)g(d0d2)

( ∑
q|(d1,d2)

µ(q)

)

=
%1(d0)

d0

∑
(q,d0)=1

µ(q)%1(q)2

q2
A1(d0q)

2.

It follows that

Σ1 =
∑

d0≤x1/4

∑
(q,d0)=1

%1(d0)µ(q)%1(q)2

d0q2
A1(d0q)

2. (4.4)

The contribution from the terms with q ≥ D0 above is � D−1
0 LB. Thus, substituting

d0q = d, we deduce that

Σ1 =
∑

d<x1/4D0

%1(d)ϑ∗(d)

d
A1(d)2 +O(D−1

0 LB), (4.5)

where

ϑ∗(d) =
∑
d0q=d
d0<x1/4

q<D0

µ(q)%1(q)

q
.

By the simple bounds
A1(d)� Ll0(logL)B (4.6)

which follows from (3.3),
ϑ∗(d)� (logL)B
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and ∑
x1/4≤d<x1/4D0

%1(d)

d
� Lk0+1/k0−1, (4.7)

the contribution from the terms on the right side of (4.5) with x1/4 ≤ d < x1/4D0 is
o(Lk0+2l0). On the other hand, assuming |µ(d)| = 1 and noting that∑

q|d

µ(q)%1(q)

q
= ϑ1(d)−1, (4.8)

for d < x1/4 we have
ϑ∗(d) = ϑ1(d)−1 +O

(
τk0+1(d)D−1

0

)
,

so that, by (3.3),

ϑ∗(d)A1(d)2 =
1

(l0!)2
S2ϑ1(d)

(
log

D

d

)2l0

+O
(
τk0+1(d)D−1

0 LB
)

+O(L2l0−1+ε).

Inserting this into (4.5) we obtain

Σ1 =
1

(l0!)2
S2

∑
d≤x1/4

%1(d)ϑ1(d)

d

(
log

D

d

)2l0

+ o(Lk0+2l0). (4.9)

Together with (3.5), this yields

|Σ1| ≤
δ1

k0!(l0!)2
S(logD)k0+2l0 + o(Lk0+2l0), (4.10)

where
δ1 = (1 + 4$)−k0 .

Next we estimate Σ2. Similar to (4.4), we have

Σ2 =
∑

d0≤x1/4

d0|P

∑
(q,d0)=1
q|P

%1(d0)µ(q)%1(q)2

d0q2
A∗1(d0q)

2.

where

A∗1(d) =
∑

(r,d)=1
r|P

µ(r)%1(r)g(dr)

r
.

In a way similar to the proof of (4.5), we deduce that

Σ2 =
∑

d<x1/4D0
d|P

%1(d)ϑ∗(d)

d
A∗1(d)2 +O(D−1

0 LB). (4.11)
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Assume d|P . By Möbius inversion we have

A∗1(d) =
∑

(r,d)=1

µ(r)%1(r)g(dr)

r

∑
q|(r,P∗)

µ(q) =
∑
q|P∗

%1(q)

q
A1(dq),

where
P∗ =

∏
D1≤p<D

p.

Noting that
ϑ1(q) = 1 +O(D−1

1 ) if q|P∗ and q < D, (4.12)

by (3.3) we deduce that

|A∗1(d)| ≤ 1

l0!
Sϑ1(d)

(
log

D

d

)l0 ∑
q|P∗
q<D

%1(q)

q
+O(Ll0−1+ε). (4.13)

If q|P∗ and q < D, then q has at most 292 prime factors. In addition, by the prime
number theorem we have ∑

D1≤p<D

1

p
= log 293 +O(L−A). (4.14)

It follows that

∑
q|P∗
q<D

%1(q)

q
≤ 1 +

292∑
ν=1

((log 293)k0)ν

ν!
+O(L−A) = δ2 +O(L−A), say.

Inserting this into (4.13) we obtain

|A∗1(d)| ≤ δ2

l0!
Sϑ1(d)

(
log

D

d

)l0
+O(Ll0−1+ε).

Combining this with (4.11), in a way similar to the proof of (4.9) we deduce that

|Σ2| ≤
δ2

2

(l0!)2
S2

∑
d<x1/4

%1(d)ϑ1(d)

d

(
log

D

d

)2l0

+ o(Lk0+2l0).

Together with (3.5), this yields

|Σ2| ≤
δ1δ

2
2

k0!(l0!)2
S(logD)k0+2l0 + o(Lk0+2l0). (4.15)
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We now turn to Σ3. In a way similar to the proof of (4.5), we deduce that

Σ3 =
∑

x1/4<d<D

%1(d)ϑ̃(d)

d
A1(d)2, (4.16)

where

ϑ̃(d) =
∑
d0q=d
x1/4<d0
d0-P

µ(q)%1(q)

q
.

By (4.6) and (4.7), we find that the contribution from the terms with x1/4 < d ≤ x1/4D0

in (4.16) is o(Lk0+2l0).
Now assume that x1/4D0 < d < D, |µ(d)| = 1 and d - P . Noting that the conditions

d0|d and x1/4 < d0 together imply d0 - P , by (4.8) we obtain

ϑ̃(d) =
∑
d0q=d
x1/4<d0

µ(q)%1(q)

q
= ϑ1(d)−1 +O

(
τk0+1(d)D−1

0

)
.

Together with (3.3), this yields

ϑ̃(d)A1(d)2 =
1

(l0!)2
S2ϑ1(d)

(
log

D

d

)2l0

+O
(
τk0+1(d)D−1

0 LB
)

+O(L2l0−1+ε).

Combining these results with (4.16) we obtain

Σ3 =
1

(l0!)2
S2

∑
x1/4D0<d<D

d-P

%1(d)ϑ1(d)

d

(
log

D

d

)2l0

+ o(Lk0+2l0). (4.17)

By (4.12), (4.14) and (3.5) we have∑
x1/4<d<D

d-P

%1(d)ϑ1(d)

d
≤
∑
d<D

%1(d)ϑ1(d)

d

∑
p|(d,P∗)

1

≤
∑

D1≤p<D

%1(p)ϑ1(p)

p

∑
d<D/p

%1(d)ϑ1(d)

d

≤ (log 293)δ1

(k0 − 1)!
S−1(logD)k0 + o(Lk0)

Together with (4.17), this yields

|Σ3| ≤
(log 293)δ1

(k0 − 1)!(l0!)2
S(logD)k0+2l0 + o(Lk0+2l0). (4.18)
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Since
1

k0!(l0!)2
=

1

(k0 + 2l0)!

(
k0 + 2l0
k0

)(
2l0
l0

)
,

it follows from (4.3), (4.10), (4.15) and (4.18) that

|T1 − T ∗1 | ≤
κ1

(k0 + 2l0)!

(
2l0
l0

)
S(logD)k0+2l0 + o(Lk0+2l0), (4.19)

where

κ1 = δ1(1 + δ2
2 + (log 293)k0)

(
k0 + 2l0
k0

)
.

Together with (3.1), this implies that

T1 ≤
1 + κ1

(k0 + 2l0)!

(
2l0
l0

)
S(logD)k0+2l0 + o(Lk0+2l0).

Combining this with (4.1), we deduce that

S1 ≤
1 + κ1

(k0 + 2l0)!

(
2l0
l0

)
Sx(logD)k0+2l0 + o(xLk0+2l0). (4.20)

We conclude this section by giving an upper bound for κ1. By the inequality

n! > (2πn)1/2nne−n

and simple computation we have

1 + δ2
2 + (log 293)k0 < 2

(
((log 293)k0)292

292!

)2

<
1

292π
(185100)584

and (
k0 + 2l0
k0

)
<

2k2l0
0

(2l0)!
<

1√
180π

(26500)360.

It follows that

log κ1 < −3500000 log
293

292
+ 584 log(185100) + 360 log(26500) < −1200.

This gives
κ1 < exp{−1200}. (4.21)
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5. Lower bound for S2

Recall that S2 is given by (2.2). The aim of this section is to establish a lower bound
for S2 on assuming Theorem 2 (see (5.6) below), which together with (4.20) leads to (2.3).

We have
S2 =

∑
1≤i≤k0

∑
n∼x

θ(n)λ(n− hi)2 +O(xε). (5.1)

Assume that 1 ≤ i ≤ k0. Changing the order of summation we obtain∑
n∼x

θ(n)λ(n− hi)2 =
∑
d1|P

∑
d2|P

µ(d1)g(d1)µ(d2)g(d2)
∑
n∼x

P (n−hi)≡0([d1,d2])

θ(n).

Now assume |µ(d)| = 1. To handle the innermost sum we first note that the condition

P (n− hi) ≡ 0 (mod d) and (n, d) = 1

is equivalent to n ≡ c(mod d) for some c ∈ Ci(d). Further, for any p, the quantity |Ci(p)|
is equal to the number of distinct residue classes (mod p) occupied by the hi − hj with
hj 6≡ hi(mod p), so |Ci(p)| = νp − 1. This implies |Ci(d)| = %2(d) by Lemma 5. Thus the
innermost sum above is equal to∑

c∈Ci([d1,d2])

∑
n∼x

n≡c([d1,d2])

θ(n) =
%2([d1, d2])

ϕ([d1, d2])

∑
n∼x

θ(n) +
∑

c∈Ci([d1,d2])

∆(θ; [d1, d2], c).

Since the number of the pairs {d1, d2} such that [d1, d2] = d is equal to τ3(d), it follows
that ∑

n∼x

θ(n)λ(n− hi)2 = T2

∑
n∼x

θ(n) +O(Ei), (5.2)

where

T2 =
∑
d1|P

∑
d2|P

µ(d1)g(d1)µ(d2)g(d2)

ϕ([d1, d2])
%2([d1, d2])

which is independent of i, and

Ei =
∑
d<D2

d|P

τ3(d)%2(d)
∑
c∈Ci(d)

|∆(θ; d, c)|.

By Cauchy’s inequality and Theorem 2 we have

Ei � xL−A. (5.3)
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It follows from (5.1)-(5.3) and the prime number theorem that

S2 = k0T2x+O(xL−A). (5.4)

Similar to (4.2), we may rewrite T2 as

T2 =
∑
d0|P

∑
d1|P

∑
d2|P

µ(d1d2)%2(d0d1d2)

ϕ(d0d1d2)
g(d0d1)g(d0d2).

In a way much similar to the proof of (4.19), from the second assertions of Lemma 2 and
Lemma 3 we deduce that

|T2 − T ∗2 | <
κ2

(k0 + 2l0 + 1)!

(
2l0 + 2

l0 + 1

)
S(logD)k0+2l0+1 + o(Lk0+2l0+1), (5.5)

where

κ2 = δ1(1 + 4$)(1 + δ2
2 + (log 293)k0)

(
k0 + 2l0 + 1

k0 − 1

)
.

Together with (3.2), this implies that

T2 ≥
1− κ2

(k0 + 2l0 + 1)!

(
2l0 + 2

l0 + 1

)
S(logD)k0+2l0+1 + o(Lk0+2l0+1).

Combining this with (5.4), we deduce that

S2 ≥
k0(1− κ2)

(k0 + 2l0 + 1)!

(
2l0 + 2

l0 + 1

)
Sx(logD)k0+2l0+1 + o(xLk0+2l0+1). (5.6)

We are now in a position to prove Theorem 1 on assuming Theorem 2. By (4.20),
(5.6) and the relation

L =
4

1 + 4$
logD,

we have
S2 − (log 3x)S1 ≥ ωSx(logD)k0+2l0+1 + o(xLk0+2l0+1), (5.7)

where

ω =
k0(1− κ2)

(k0 + 2l0 + 1)!

(
2l0 + 2

l0 + 1

)
− 4(1 + κ1)

(1 + 4$)(k0 + 2l0)!

(
2l0
l0

)
,

which may be rewritten as

ω =
1

(k0 + 2l0)!

(
2l0
l0

)(
2(2l0 + 1)

l0 + 1

k0(1− κ2)

k0 + 2l0 + 1
− 4(1 + κ1)

1 + 4$

)
.

Note that
κ2

κ1

=
k0(k0 + 2l0 + 1)(1 + 4$)

(2l0 + 1)(2l0 + 2)
< 108.
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Thus, by (4.21), both of the constants κ1 and κ2 are extremely small. It follows by simple
computation that

ω > 0. (5.8)

Finally, from (5.7) and (5.8) we deduce (2.3), whence Theorem 1 follows.

Remark. The bounds (4.19) and (5.5) are crude and there may be some ways to
improve them considerably. It is even possible to evaluate T1 and T2 directly. Thus one
might be able to show that (2.3) holds with a considerably smaller k0.

6. Combinatorial arguments

The rest of this paper is devoted to proving Theorem 2. In this and the next six
sections we assume that 1 ≤ i ≤ k0. Write

D2 = x1/2−ε.

On the left side of (2.12), the contribution from the terms with d ≤ D2 is� xL−A by the
Bombieri-Vinogradov Theorem. Recalling that D1 and P0 are given by (2.9) and (2.10)
respectively, by trivial estimation, for D2 < d < D2 we may also impose the constraint
(d,P0) < D1, and replace θ(n) by Λ(n). Thus Theorem 2 follows from the following∑

D2<d<D2

d|P
(d,P0)<D1

∑
c∈Ci(d)

|∆(Λ; d, c)| � xL−A. (6.1)

The aim of this section is to reduce the proof of (6.1) to showing that∑
D2<d<D2

d|P
(d,P0)<D1

∑
c∈Ci(d)

|∆(γ; d, c)| � xL−41A (6.2)

for γ being of Type I, II or III.
Let L be given by L(n) = log n. By Lemma 6, for n ∼ x we have Λ(n) = Λ1(n) where

Λ1 =
10∑
j=1

(−1)j−1

(
10

j

) ∑
Mj ,...,M1,Nj ,...,N1

(µκMj
) ∗ ... ∗ (µκM1) ∗ (κNj) ∗ ... ∗ (LκN1).

Here Mj, ...,M1, Nj, ..., N1 ≥ 1 run over the powers of η satisfying

Mt ≤ x1/10, (6.3)

[Mj...M1Nj...N1, η
20Mj...M1Nj...N1) ∩ [x, 2x) 6= φ. (6.4)
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Let Λ2 have the same expression as Λ1 but with the constraint (6.4) replaced by

[Mj...M1Nj...N1, η
20Mj...M1Nj...N1) ⊂ [x, 2x). (6.5)

Since Λ1−Λ2 is supported on [η−20x, η20x]∪ [2η−20x, 2η20x] and (Λ1−Λ2)(n)� τ20(n)L,
by Lemma 8 we have ∑

D2<d<D2

d|P
(d,P0)<D1

∑
c∈Ci(d)

|∆(Λ1 − Λ2; d, c)| � xL−A.

Further, let

Λ3 =
10∑
j=1

(−1)j−1

(
10

j

)
(logN1)

∑
Mj ,...,M1,Nj ,...,N1

(µκMj
)∗...∗(µκM1)∗(κNj)∗...∗(κN1) (6.6)

with Mj, ...,M1, Nj, ..., N1 satisfying (6.3) and (6.5). Since (Λ2 − Λ3)(n) � τ20(n)L−2A,
by Lemma 8 we have ∑

D2<d<D2

d|P
(d,P0)<D1

∑
c∈Ci(d)

|∆(Λ2 − Λ3; d, c)| � xL−A.

Now assume that 1 ≤ j′ ≤ j ≤ 10. Let γ be of the form

γ = (logNj′)(µκMj
) ∗ ... ∗ (µκM1) ∗ (κNj) ∗ ... ∗ (κN1).

with Mj, ...,M1, Nj, ..., N1 satisfying (6.3) and (6.5), and Nj ≤ ... ≤ N1. We claim that
either the estimate

∆(γ; d, c)� x1−$+ε

d
(6.7)

trivially holds for d < D2 and (c, d) = 1, or γ is of Type I, II or III.
Write Mt = xµt and Nt = xνt . We have

0 ≤ µt ≤
1

10
, 0 ≤ νj ≤ ... ≤ ν1, 1 ≤ µj + ...+ µ1 + νj + ...+ ν1 < 1 +

log 2

L
.

In the case 3/8 + 8$ < ν1 ≤ 1/2, γ is of Type I or II by choosing β = κN1 ; in the case
1/2 < ν1 ≤ 1/2 + 3$, γ is of Type II by choosing α = κN1 ; in the case 1/2 + 3$ < ν1,
the estimate (6.7) trivially holds.

Since ν1 ≥ 2/5 if j = 1, 2, it remains to deal with the case

j ≥ 3, ν1 ≤
3

8
+ 8$.
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Write
ν∗ = µj + ...+ µ1 + νj + ...+ ν4

(the partial sum νj + ... + ν4 is void if j = 3). In the case ν∗ + ν1 ≤ 3/8 + 8$, γ is
obviously of Type III. Further, if ν∗ has a partial sum, say ν ′, satisfying

3

8
+ 8$ < ν ′ + ν1 <

5

8
− 8$,

then γ is of Type I or II. For example, if

3

8
+ 8$ < µj + ...+ µ1 + ν1 ≤

1

2
,

we choose β = (µκMj
) ∗ ... ∗ (µκM1) ∗ (κN1); if

1

2
< µj + ...+ µ1 + ν1 <

5

8
− 8$,

we choose α = (µκMj
) ∗ ... ∗ (µκM1) ∗ (κN1).

It now suffices to assume that

ν∗ + ν1 ≥
5

8
− 8$, (6.8)

and every partial sum ν ′ of ν∗ satisfies either

ν ′ + ν1 ≤
3

8
+ 8$ or ν ′ + ν1 ≥

5

8
− 8$.

Let ν ′1 be the smallest partial sum of ν∗ such that ν ′1 + ν1 ≥ 5/8− 8$ (the existence of ν ′1
follows from (6.8), and there may be more than one choice of ν ′1), and let ν̃ be a positive
term in ν ′1. Since ν ′1 − ν̃ is also a partial sum of ν∗, we must have

ν ′1 − ν̃ + ν1 ≤ 3/8 + 8$,

so that

ν̃ ≥ 1

4
− 16$.

This implies that ν̃ must be one of the νt, t ≥ 4 (that arises only if j ≥ 4). In particular
we have ν4 ≥ 1/4− 16$. Now, the conditions

1

4
− 16$ ≤ ν4 ≤ ν3 ≤ ν2 ≤ ν1, ν4 + ν3 + ν2 + ν1 < 1 +

log 2

L
together imply that

1

2
− 32$ ≤ ν3 + ν4 <

1

2
+

log 2

2L
.

It follows that γ is of Type I or II by choosing β = κN3 ∗ κN4 .
It should be remarked, by the Siegel-Walfisz theorem, that for all the choices of β

above the Siegel-Walfisz assumption in (A2) holds. Noting that the sum in (6.6) contains
O(L40A) terms, by the above discussion we conclude that (6.2) implies (6.1).
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7. The dispersion method

In this and the next three sections we treat the Type I and II estimates simultaneously
via the methods in [1, Section 3-7]. We henceforth assume that γ = α ∗ β satisfies (A1),
(A2) and (A3). Recall that x1 and x2 are given by (2.13). We shall apply Lemma 4 with

R∗ = x−εN (7.1)

if γ is of Type I (x1 < N ≤ x2), and

R∗ = x−3$N (7.2)

if γ is of Type II (x2 < N < 2x1/2).
Note that D2

1 < R∗ < D2. By Lemma 4 and Lemma 5, the proof of (6.2) is reduced
to showing that∑

R∗/D1<r<R∗

|µ(r)|
∑

a∈Ci(r)

∑
D2/r<q<D2/r

q|P
(q,rP0)=1

∑
b∈Ci(q)

∣∣∆(γ; r, a; q, b)
∣∣� xL−41A,

where, for |µ(qr)| = (a, r) = (b, q) = 1,

∆(γ; r, a; q, b) =
∑
n≡a(r)
n≡b(q)

γ(n)− 1

ϕ(qr)

∑
(n,qr)=1

γ(n).

It therefore suffices to prove that

B(γ;Q,R) :=
∑
r∼R

|µ(r)|
∑

a∈Ci(r)

∑
q∼Q
q|P

(q,rP0)=1

∑
b∈Ci(q)

∣∣∆(γ; r, a; q, b)
∣∣� xL−43A, (7.3)

subject to the conditions
x−$R∗ < R < R∗ (7.4)

and
1

2
x1/2−ε < QR < x1/2+2$, (7.5)

which are henceforth assumed.
For notational simplicity, in some expressions the subscript i will be omitted even

though they depend on it. In what follows we assume that

r ∼ R, |µ(r)| = 1, a ∈ Ci(r). (7.6)
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Let c(r, a; q, b) be given by

c(r, a; q, b) = sgn ∆(γ; r, a; q, b)

if
q ∼ Q, q|P , (q, rP0) = 1, b ∈ Ci(q),

and
c(r, a; q, b) = 0 otherwise.

Changing the order of summation we obtain∑
q∼Q
q|P

(q,rP0)=1

∑
b∈Ci(q)

∣∣∆(γ; r, a; q, b)
∣∣ =

∑
(m,r)=1

α(m)D(r, a;m),

where

D(r, a;m) =
∑

(q,m)=1

∑
b

c(r, a; q, b)

( ∑
mn≡a(r)
mn≡b(q)

β(n)− 1

ϕ(qr)

∑
(n,qr)=1

β(n)

)
.

It follows by Cauchy’s inequality that

B(γ;Q,R)2 �MRLB
∑
r∼R

|µ(r)|
∑

a∈Ci(r)

∑
(m,r)=1

f(m)D(r, a;m)2, (7.7)

where f(y) is as in Lemma 7 with η∗ = η19. We have∑
(m,r)=1

f(m)D(r, a;m)2 = S1(r, a)− 2S2(r, a) + S3(r, a), (7.8)

where Sj(r, a), j = 1, 2, 3 are defined by

S1(r, a) =
∑

(m,r)=1

f(m)

( ∑
(q,m)=1

∑
b

c(r, a; q, b)
∑

mn≡a(r)
mn≡b(q)

β(n)

)2

,

S2(r, a) =
∑
q1

∑
b1

∑
q2

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

ϕ(q2r)

×
∑
n1

∑
(n2,q2r)=1

β(n1)β(n2)
∑

mn1≡a(r)
mn1≡b1(q1)

(m,q2)=1

f(m),
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S3(r, a) =
∑
q1

∑
b1

∑
q2

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

ϕ(q1r)ϕ(q2r)

×
∑

(n1,q1r)=1

∑
(n2,q2r)=1

β(n1)β(n2)
∑

(m,q1q2r)=1

f(m).

By (7.7) and (7.8), the proof of (7.3) is reduced to showing that∑
r

∑
a

(
S1(r, a)− 2S2(r, a) + S3(r, a)

)
� xNR−1L−87A (7.9)

on assuming A ≥ B. Here we have omitted the constraints given in (7.6) for notational
simplicity, so they have to be remembered in the sequel.

8. Evaluation of S3(r, a)

In this section we evaluate S3(r, a). We shall make frequent use of the trivial bound

f̂(z)�M. (8.1)

By Möbius inversion and Lemma 7, for qj ∼ Q, j = 1, 2 we have∑
(m,q1q2r)=1

f(m) =
ϕ(q1q2r)

q1q2r
f̂(0) +O(xε). (8.2)

This yields

S3(r, a) =f̂(0)
∑
q1

∑
b1

∑
q2

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

ϕ(q1)ϕ(q2)ϕ(r)

ϕ(q1q2)

q1q2r

×
∑

(n1,q1r)=1

∑
(n2,q2r)=1

β(n1)β(n2) +O(xεN2R−2).

In view of (2.10), if (q1q2,P0) = 1, then either (q1, q2) = 1 or (q1, q2) > D0. Thus, on the
right side above, the contribution from the terms with (q1, q2) > 1 is, by (8.1) and trivial
estimation,

� xND−1
0 R−2LB.

It follows that
S3(r, a) = f̂(0)X(r, a) +O(xND−1

0 R−2LB), (8.3)

where

X(r, a) =
∑
q1

∑
b1

∑
(q2,q1)=1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

q1q2rϕ(r)

∑
(n1,q1r)=1

∑
(n2,q2r)=1

β(n1)β(n2).
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9. Evaluation of S2(r, a)

The aim of this section is to show that

S2(r, a) = f̂(0)X(r, a) +O(xND−1
0 R−2LB). (9.1)

Assume c(r, a; q1, b1)c(r, a; q2, b2) 6= 0. Let ν(mod q1r) be a common solution to

ν ≡ a(mod r), ν ≡ b1(mod q1).

Substituting mn1 = n and applying Lemma 8 we obtain∑
n1

β(n1)
∑

mn1≡a(r)
mn1≡b1(q1)

(m,q2)=1

f(m)�
∑
n<2x

n≡ν(q1r)

τ20(n)� xLB

q1r
.

It follows that the contribution from the terms with (q1, q2) > 1 in S2(r, a) is

� xND−1
0 R−2LB,

so that,

S2(r, a) =
∑
q1

∑
b1

∑
(q2,q1)=1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

ϕ(q2r)

×
∑
n1

∑
(n2,q2r)=1

β(n1)β(n2)
∑

mn1≡a(r)
mn1≡b1(q1)

(m,q2)=1

f(m) +O(xND−1
0 R−2LB). (9.2)

Note that the innermost sum in (9.2) is void unless (n1, q1r) = 1. For |µ(q1q2r)| = 1 and
(q2,P0) = 1 we have

q2

ϕ(q2)
= 1 +O(τ(q2)D−1

0 ),

and, by Lemma 8,∑
(n1,q1r)=1

β(n1)
∑

mn1≡a(r)
mn1≡b1(q1)

(m,q2)>1

f(m)�
∑
n<2x

n≡ν(q1r)
(n,q2)>1

τ20(n)� τ20(q2)xLB

q1rD0

.

Thus the relation (9.2) remains valid if the constraint (m, q2) = 1 in the innermost sum
is removed and the denominator ϕ(q2r) is replaced by q2ϕ(r). Namely we have

S2(r, a) =
∑
q1

∑
b1

∑
(q2,q1)=1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

q2ϕ(r)

×
∑
n1

∑
(n2,q2r)=1

β(n1)β(n2)
∑

mn1≡a(r)
mn1≡b1(q1)

f(m) +O(xND−1
0 R−2LB).

(9.3)
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By Lemma 7, for (n1, q1r) = 1 we have∑
mn1≡a(r)
mn1≡b1(q1)

f(m) =
1

q1r

∑
|h|<H2

f̂

(
h

q1r

)
eq1r(−hµ) +O(x−2),

where
H2 = 4QRM−1+2ε,

and µ(modq1r) is a common solution to

µn1 ≡ a(mod r), µn1 ≡ b1(mod q1). (9.4)

Inserting this into (9.3) we deduce that

S2(r, a) = f̂(0)X(r, a) +R2(r, a) +O(xND−1
0 R−2LB), (9.5)

where

R2(r, a) =
∑
q1

∑
b1

∑
(q2,q1)=1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

q1q2rϕ(r)

( ∑
(n2,q2r)=1

β(n2)

)

×
∑

(n1,q1r)=1

β(n1)
∑

1≤|h|<H2

f̂

(
h

q1r

)
eq1r(−hµ).

The proof of (9.1) is now reduced to estimating R2(r, a). First we note that the second
inequality in (7.5) implies

H2 � x−1/2+2$+2εN < 2x2$+2ε, (9.6)

since M−1 � x−1N (here and in what follows, we use the second inequality in (7.5) only).
This implies that R2(r, a) = 0 if γ is of Type I.

Now assume that γ is of of Type II. Noting that

µ

q1r
≡ aq1n1

r
+
b1rn1

q1

(mod 1)

by (9.4), we have

R2(r, a)� N1+εR−2
∑
n∼N

(n,r)=1

|R∗(r, a;n)|, (9.7)

where

R∗(r, a;n) =
∑

(q,n)=1

∑
b

c(r, a; q, b)

q

∑
1≤|h|<H2

f̂

(
h

qr

)
e

(
−ahqn
r

− bhrn

q

)
.
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To estimate the sum of |R∗(r, a;n)| we observe that

|R∗(r, a;n)|2 =
∑

(q,n)=1

∑
b

∑
(q′,n)=1

∑
b′

c(r, a; q, b)c(r, a; q′, b′)

qq′

×
∑

1≤|h|<H2

∑
1≤|h′|<H2

f̂

(
h

qr

)
f̂

(
h′

q′r

)
e

(
a(h′q̄′ − hq̄)n̄

r
− bhrn

q
+
b′h′rn

q′

)
.

It follows, by changing the order of summation and applying (8.1), that

M−2
∑
n∼N

(n,r)=1

|R∗(r, a;n)|2 �
∑
q

∑
b

∑
q′

∑
b′

|c(r, a; q, b)c(r, a; q′, b′)|
qq′

×
∑

1≤|h|<H2

∑
1≤|h′|<H2

|W(r, a; q, b; q′, b′;h, h′)|,
(9.8)

where

W(r, a; q, b; q′, b′;h, h′) =
∑
n∼N

(n,qq′r)=1

e

(
a(h′q̄′ − hq̄)n̄

r
− bhrn

q
+
b′h′rn

q′

)
.

Since M−1 � N−1, by the second inequality in (7.4) and (7.2) we have

H2Q
−1 � x−3$+ε. (9.9)

It follows that, on the right side of (9.8), the contribution from the terms with h′q = hq′

is
� NQ−2

∑
1≤h<H2

∑
q<2Q

τ(hq)� x−3$+εN. (9.10)

Now assume that c(r, a; q, b)c(r, a; q′, b′) 6= 0, 1 ≤ |h| < H2, 1 ≤ |h′| < H2 and
h′q 6= hq′. Letting d = [q, q′]r, we have

a(h′q̄′ − hq̄)
r

− bhr̄

q
+
b′hr̄

q′
≡ c

d
(mod 1)

for some c with
(c, r) = (h′q̄′ − hq̄, r).

It follows by the estimate (3.13) that

W(r, a; q, b; q′, b′;h, h′)� d1/2+ε +
(c, d)N

d
. (9.11)
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Since N > x2, by the first inequality in (7.4), (7.2) and (2.13) we have

R−1 < x4$N−1 < x−1/2+8$. (9.12)

Together with (7.5), this implies that

Q� x10$. (9.13)

By (9.13) and (7.5) we have

d1/2 � (Q2R)1/2 � x1/4+6$.

On the other hand, noting that

h′q̄′ − hq̄ ≡ (h′q − hq′)qq′ (mod r),

we have
(c, d) ≤ (c, r)[q, q′]� [q, q′]H2Q. (9.14)

Together with (9.6), (9.12) and (9.13), this yields

(c, d)N

d
� H2NQR

−1 � x16$+ε.

Combining these estimates with (9.11) we deduce that

W(r, a; q, b; q′, b′;h, h′)� x1/4+7$.

Together with (9.6), this implies that, on the right side of (9.8), the contribution from
the terms with h′q 6= hq′ is � x1/4+12$ which is sharper than the right side of (9.10).
Combining these estimates with (9.8) we conclude that∑

n∼N
(n,r)=1

|R∗(r, a;n)|2 � x1−3$+εM.

This yields, by Cauchy’s inequality,∑
n∼N

(n,r)=1

|R∗(r, a;n)| � x1−3$/2+ε.

Inserting this into (9.7) we obtain

R2(r, a)� x1−$NR−2 (9.15)

which is sharper than the O term in (9.5).
The relation (9.1) follows from (9.5) and (9.15) immediately.
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10. A truncation of the sum of S1(r, a)

We are unable to evaluate each S1(r, a) directly. However, we shall establish a relation
of the form∑

r

∑
a

S1(r, a) =
∑
r

∑
a

(
f̂(0)X(r, a) +R1(r, a)

)
+O(xNR−1L−87A) (10.1)

with R1(r, a) to be specified below in (10.10). In view of (8.3) and (9.1), the proof of
(7.9) will be reduced to estimating R1(r, a).

By definition we have

S1(r, a) =
∑
q1

∑
b1

∑
q2

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

×
∑
n1

∑
n2≡n1(r)

β(n1)β(n2)
∑

mn1≡a(r)
mn1≡b1(q1)
mn2≡b2(q2)

f(m). (10.2)

Let U(r, a; q0) denote the sum of the terms in (10.2) with (q1, q2) = q0. Clearly we
have U(r, a; q0) = 0 unless

q0 < 2Q, q0|P , (q0, rP0) = 1,

which are henceforth assumed. We first claim that∑
r

∑
a

∑
q0>1

U(r, a; q0)� xN(D0R)−1LB. (10.3)

Assume that, for j = 1, 2,

qj ∼ Q, qj|P , (qj, rP0) = 1, bj ∈ Ci(qj)

and (q1, q2) = q0. Write q′1 = q1/q0, q′2 = q2/q0. By Lemma 5, there exist t1, t2 ∈ Ci(q0),
b′1 ∈ Ci(q′1) and b′2 ∈ Ci(q′2) such that

bj ≡ tj(mod q0), bj ≡ b′j(mod q′j).

Note that the conditions mn1 ≡ t1(mod q0) and mn2 ≡ t2(mod q0) together imply that

t2n1 ≡ t1n2(mod q0). (10.4)

Thus the innermost sum in (10.2) is void if (10.4) fails to hold for any t1, t2 ∈ Ci(q0). On
the other hand, if (10.4) holds for some t1, t2 ∈ Ci(q0), the innermost sum in (10.2) may
be rewritten as ∑

mn1≡a1(q0r)
mn1≡b′1(q′1)
mn2≡b′2(q′2)

f(m)
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where a1(mod q0r) is a common solution to a1 ≡ a(mod r) and a1 ≡ t1(mod q0). Hence,
changing the order of summation we obtain∑

b1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)
∑
n1

∑
n2≡n1(r)

β(n1)β(n2)
∑

mn1≡a(r)
mn1≡b1(q1)
mn2≡b2(q2)

f(m)

�
∑

t1∈Ci(q0)

∑
t2∈Ci(q0)

∑
n1

∑
n2≡n1(r)

t1n2≡t2n1(q0)

|β(n1)β(n2)|
∑

mn1≡a1(q0r)

f(m)J (mn1, q
′
1)J (mn2, q

′
2),

where
J (n, q′) =

∑
b′j∈Ci(q′)
b′j≡n(q′)

1.

This yields, by summing over q1 and q2 with (q1, q2) = q0 and changing the order of
summation,

U(r, a; q0)�
∑

t1∈Ci(q0)

∑
t2∈Ci(q0)

∑
n1

∑
n2≡n1(r)

t1n2≡t2n1(q0)

|β(n1)β(n2)|

×
∑

mn1≡a1(q0r)

f(m)X (mn1)X (mn2),

(10.5)

where
X (n) =

∑
q′∼Q/q0

|µ(q′)|Ji(n, q′).

We may assume that (n1, q0r) = 1, since the innermost sum in (10.5) is void otherwise.
Let a2(mod q0r) be a common solution to a2 ≡ a1(mod r) and a2 ≡ t2(mod q0). In the
case

n2 ≡ n1(mod r), t1n2 ≡ t2n1(mod q0),

the condition mn1 ≡ a1(mod q0r) is equivalent to mn2 ≡ a2(mod q0r). Thus the inner-
most sum in (10.5) is

≤
∑

mn1≡a1(q0r)

f(m)X (mn1)2 +
∑

mn2≡a2(q0r)

f(m)X (mn2)2.

Since

J (n, q′) =

{
1 if q′|P (n− hi), (q′, n) = 1

0 otherwise,

it follows that
X (n) ≤

∑
q′|P (n−hi)

(q′,n)=1

|µ(q′)|. (10.6)
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Assume that j = 1, 2, 1 ≤ µ ≤ k0 and µ 6= i. Write

njµ =
nj

(nj, hµ − hi)
, h∗jµ =

hµ − hi
(nj, hµ − hi)

.

Noting that the conditions p|(mnj+hµ−hi) and p - nj together imply that p|(mnjµ+h∗jµ),
by (10.6) we have

X (mnj) ≤
∏

1≤µ≤k0
µ 6=i

τ(mnjµ + h∗jµ) ≤
∑

1≤µ≤k0
µ 6=i

τ(mnjµ + h∗jµ)k0−1.

Since (njµ, h
∗
jµ) = (njµ, q0r) = 1, it follows by Lemma 8 that∑

mnj≡aj(q0r)

f(m)X (mnj)
2 � MLB

q0r
+ xε/3

(here the term xε/3 is necessary when q0r > x−ε/4M). Combining these estimates with
(10.5) we deduce that

U(r, a; q0)�
(
MLB

q0r
+ xε/3

) ∑
(n1,q0r)=1

|β(n1)|
∑

t1∈Ci(q0)

∑
t2∈Ci(q0)

∑
n2≡n1(r)

t1n2≡t2n1(q0)

|β(n2)|.

Using Lemma 8 again, we find that the innermost sum is

� NLB

q0r
+ xε/3.

It follows that

U(r, a; q0)� %2(q0)2

(
xNLB

(q0r)2
+
x1+ε/2

q0r
+ xεN

)
.

This leads to (10.3), since NR−1 > xε and

NQR� x1/2+2$N � x1−$NR−1

by (7.5), (7.1), (7.2) and the second inequality in (7.4).
We now turn to U(r, a; 1). Assume |µ(q1q2r)| = 1. In the case (n1, q1r) = (n2, q2r) = 1,

the innermost sum in (10.2) is, by Lemma 7, equal to

1

q1q2r

∑
|h|<H1

f̂

(
h

q1q2r

)
eq1q2r(−µh) +O(x−2),

where
H1 = 8Q2RM−1+2ε (10.7)
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and µ(mod q1q2r) is a common solution to

µn1 ≡ a(mod r), µn1 ≡ b1(mod q1), µn2 ≡ b2(mod q2). (10.8)

It follows that
U(r, a; 1) = f̂(0)X∗(r, a) +R1(r, a) +O(1), (10.9)

where

X∗(r, a) =
∑
q1

∑
b1

∑
(q2,q1)=1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

q1q2r

∑
(n1,q1r)=1

∑
n2≡n1(r)
(n2,q2)=1

β(n1)β(n2)

and

R1(r, a) =
∑
q1

∑
b1

∑
(q2,q1)=1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

q1q2r

×
∑

(n1,q1r)=1

∑
n2≡n1(r)
(n2,q2)=1

β(n1)β(n2)
∑

1≤|h|<H

f̂

(
h

q1q2r

)
eq1q2r(−µh).

(10.10)

By (10.2), (10.3) and (10.9) we conclude that∑
r

∑
a

S1(r, a) =
∑
r

∑
a

(
f̂(0)X∗(r, a) +R1(r, a)

)
+O(xN(D0R)−1LB).

In view of (8.1), the proof of (10.1) is now reduced to showing that∑
r

∑
a

(X∗(r, a)−X(r, a))� N2R−1L−87A. (10.11)

We have

X∗(r, a)−X(r, a) =
∑
q1

∑
b1

∑
(q2,q1)=1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

q1q2r
V(r; q1, q2)

with

V(r; q1, q2) =
∑

(n1,q1r)=1

∑
n2≡n1(r)
(n2,q2)=1

β(n1)β(n2)− 1

ϕ(r)

∑
(n1,q1r)=1

∑
(n2,q2r)=1

β(n1)β(n2)

which is independent of a. It follows that∑
r

∑
a

(X∗(r, a)−X(r, a))� 1

R

∑
q1∼Q

∑
q2∼Q

%2(q1q2)

q1q2

∑
r∼R

(r,q1q2)=1

%2(r)|V(r; q1, q2)|. (10.12)
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Noting that

V(r; q1, q2) =
∑∗

l mod r

( ∑
n≡l(r)

(n,q1)=1

β(n)− 1

ϕ(r)

∑
(n,q1r)=1

β(n)

)( ∑
n≡l(r)

(n,q2)=1

β(n)− 1

ϕ(r)

∑
(n,q2r)=1

β(n)

)
,

by Cauchy’s inequality, the condition (A2) and Lemma 10, we find that the innermost
sum in (10.12) is

� τ(q1q2)BN2L−100A,

whence (10.11) follows.
A combination of (8.3), (9.1) and (10.1) leads to∑
r

∑
a

(
S1(r.a)− 2S2(r, a) + S3(r, a)

)
=
∑
r

∑
a

R1(r, a) +O(xNR−1L−87A). (10.13)

Note that
µ

q1q2r
≡ aq1q2n1

r
+
b1q2rn1

q1

+
b2q1rn2

q2

(mod 1)

by (10.8). Hence, on substituting n2 = n1 + kr, we may rewrite R1(r, a) as

R1(r, a) =
1

r

∑
|k|<N/R

R1(r, a; k), (10.14)

where

R1(r, a; k) =
∑
q1

∑
b1

∑
(q2,q1)=1

∑
b2

c(r, a; q1, b1)c(r, a; q2, b2)

q1q2

∑
1≤|h|<H1

f̂

(
h

q1q2r

)
×

∑
(n,q1r)=1

(n+kr,q2)=1

β(n)β(n+ kr)e(−hξ(r, a; q1, b1; q2, b2;n, k)).

with

ξ(r, a; k; q1, b1; q2, b2;n) =
aq1q2n

r
+
b1q2rn

q1

+
b2q1r(n+ kr)

q2

.

Recall that, in the Type I and II cases, we have reduced the proof of (6.2) to proving
(7.9) at the end of Section 7. Now, by (10.13) and (10.14), the proof of (7.9) is in turn
reduced to showing that

R1(r, a; k)� xL−88A

for |k| < NR−1. In fact, we shall prove the sharper bound

R1(r, a; k)� x1−$/2 (10.15)
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in the next two sections.
We conclude this section by showing that the gap between (10.15) and some trivial

bounds is not too large. It trivially follows from (8.1) that

R1(r, a; k)� x1+εH1.

On the other hand, in view of (2.13), since

H1 � xε(QR)2(MN)−1NR−1,

and, by the first inequality in (7.4), (7.1) and (7.2),

NR−1 <

{
x$+ε if x1 < N ≤ x2

x4$ if x2 < N < 2x1/2,
(10.16)

it follows from (7.5) that

H1 �

{
x5$+2ε if x1 < N ≤ x2

x8$+ε if x2 < N < 2x1/2.
(10.17)

Thus, in order to prove (10.15), we need only to save a small power of x from the trivial
estimate.

The bounds (10.16) and (10.17) will find application in the next two sections.

11. Estimation of R1(r, a; k): The Type I case

In this and the next sections we assume that |k| < NR−1, and abbreviate

R1, c(q1, b1), c(q2, b2) and ξ(q1, b1; q2, b2;n)

for
R1(r, a; k), c(r, a; q1, b1), c(r, a; q2, b2) and ξ(r, a, k; q1, b1; q2, b2;n)

respectively, with the aim of proving (10.15). The variables r, a and k may also be
omitted somewhere else for notational simplicity. The proof is somewhat analogous to
the estimation of R2(r, a) in Section 9; the main tool we need is Lemma 11.

Assume that x1 < N ≤ x2 and R∗ is as in (7.1). We have

R1 � N ε
∑
q1

∑
b1

|c(q1, b1)|
q1

∑
n∼N

(n,q1r)=1

|F(q1, b1;n)|, (11.1)
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where

F(q1, b1;n) =
∑

1≤|h|<H1

∑
(q2,q1(n+kr))=1

∑
b2

c(q2, b2)

q2

f̂

(
h

q1q2r

)
e(−hξ(q1, b1; q2, b2;n)).

In what follows assume c(q1, b1) 6= 0. To estimate the sum of |F(q1, b1;n)| we observe
that, similar to (9.8),

M−2
∑
n∼N

(n,q1r)=1

|F(q1, b1;n)|2 �
∑

(q2,q1)=1

∑
(q′2,q1)=1

∑
b2

∑
b′2

|c(q2, b2)c(q′2, b
′
2)|

q2q′2

×
∑

1≤|h|<H1

∑
1≤|h′|<H1

|G(h, h′; q1, b1, q2, b2; q′2, b
′
2)|,

(11.2)

where

G(h, h′; q1, b1, q2, b2; q′2, b
′
2) =

∑
n∼N

(n,q1r)=1
(n+kr,q2q′2)=1

e
(
h′ξ(q1, b1; q′2, b

′
2;n)− hξ(q1, b1; q2, b2;n)

)
.

The condition N ≤ x2 is essential for bounding the terms with h′q2 = hq′2 in (11.2).
By (7.5) we have

H1Q
−1 � xε(QR)(MN)−1N � x−2$+ε.

It follows that, on the right side of (11.2), the contribution from the terms with h′q2 = hq′2
is

� NQ−2
∑

1≤h<H1

∑
q∼Q

τ(hq)B � x−2$+εN. (11.3)

Now assume that c(q2, b2)c(q′2, b
′
2) 6= 0, (q2q

′
2, q1) = 1 and h′q2 6= hq′2. We have

h′ξ(q1, b1; q′2, b
′
2;n)− hξ(q1, b1; q2, b2;n)

≡ (h′q′2 − hq̄2)aq1n

r
+

(h′q′2 − hq̄2)b1rn

q1

+
h′b′2q1r(n+ kr)

q′2
− hb2q1r(n+ kr)

q2

(mod 1).

Letting d1 = q1r and d2 = [q2, q
′
2], we may write

(h′q′2 − hq̄2)aq̄1

r
+

(h′q′2 − hq̄2)b1r̄

q1

≡ c1

d1

(mod 1)

for some c1 with
(c1, r) = (h′q′2 − hq̄2, r),

and
h′b′2q1r

q′2
− hb2q1r

q2

≡ c2

d2

(mod 1)
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for some c2, so that

h′ξ(q1, b1; q′2, b
′
2;n)− hξ(q1, b1; q2, b2;n) ≡ c1n̄

d1

+
c2(n+ kr)

d2

(mod 1).

Since (d1, d2) = 1, it follows by Lemma 11 that

G(h, h′; q1, b1, q2, b2; q′2, b
′
2)� (d1d2)1/2+ε +

(c1, d1)N

d1

. (11.4)

We appeal to the condition N > x1 that gives, by (10.16),

R−1 < x$+εN−1 < x−3/4−15$+εN. (11.5)

Together with (7.5), this yields

(d1d2)1/2 � (Q3R)1/2 � x3/4+3$R−1 � x−12$+εN.

A much sharper bound for the second term on the right side of (11.4) can be obtained.
In a way similar to the proof of (9.14), we find that

(c1, d1) ≤ (c1, r)q1 � H1Q
2.

It follows by (10.17), (7.5) and the first inequality in (11.5) that

(c1, d1)

d1

� H1(QR)R−2 � x1/2+9$+4εN−2 � x−1/4−6$.

Here we have used the condition N > x1 again. Combining these estimates with (11.4)
we deduce that

G(h, h′; q1, b1, q2, b2; q′2, b
′
2)� x−12$+εN.

Together with (10.17), this implies that, on the right side of (11.2), the contribution from
the terms with h′q2 6= hq′2 is

� x−12$+εH2
1N � x−2$+5εN

which has the same order of magnitude as the right side of (11.3) essentially. Combining
these estimates with (11.2) we obtain∑

n∼N
(n,q1r)=1

|F(h; q1, b1;n)|2 � x1−2$+5εM.

This yields, by Cauchy’s inequality,∑
n∼N

(n,q1r)=1

|F(h; q1, b1;n)| � x1−$+3ε. (11.6)

The estimate (10.15) follows from (11.1) and (11.6) immediately.
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12. Estimation of R1(r, a; k): The Type II case

Assume that x2 < N < 2x1/2 and R∗ is as in (7.2). We have

R1 � N ε
∑
n∼N

(n,r)=1

|K(n)|, (12.1)

where

K(n) =
∑

(q1,n)=1

∑
b1

∑
(q2,q1(n+kr))=1

∑
b2

c(q1, b1)c(q2, b2)

q1q2

∑
1≤|h|<H1

f̂

(
h

q1q2r

)
e(−hξ(q1, b1; q2, b2;n)).

Let
∑#

stand for a summation over the 8-tuples (q1, b1; q2, b2; q′1, b
′
1; q′2, b

′
2) with

(q1, q2) = (q′1, q
′
2) = 1.

To estimate the sum of |K(n)| we observe that, similar to (9.8),

M−2
∑
n∼N

(n,r)=1

|K(n)|2 �
∑# |c(q1, b1)c(q2, b2)c(q′1, b

′
1)c(q′2, b

′
2)|

q1q2q′1q
′
2

×
∑

1≤|h|<H1

∑
1≤|h′|<H1

|M(h, h′; q1, b1; q2, b2; q′1, b
′
1; q′2, b

′
2)|,

(12.2)

where

M(h, h′; q1, b1; q2, b2; q′1, b
′
1; q′2, b

′
2) =

∑′

n∼N

e(h′ξ(q′1, b
′
1; q′2, b

′
2;n)− hξ(q1, b1; q2, b2;n)).

Here
∑′

is restriction to (n, q1q
′
1r) = (n+ kr, q2q

′
2) = 1.

Similar to (9.9), we have
H1Q

−2 � x−3$+ε.

Hence, on the right side of (12.2), the contribution from the terms with h′q1q2 = hq′1q
′
2 is

� NQ−4
∑

1≤h<H1

∑
q∼Q

∑
q′∼Q

τ(hqq′)B � x−3$+εN. (12.3)

Note that the bounds (9.12) and (9.13) are valid in the present situation. Since R is
near to x1/2 in the logarithmic scale and Q is small, it can be shown via Lemma 11 that
the terms with h′q1q2 6= hq′1q

′
2 on the right side of (12.2) make a small contribution in

comparison with (12.3). Assume that

c(q1, b1)c(q2, b2)c(q′1, b
′
1)c(q′2, b

′
2) 6= 0, (q1, q2) = (q′1, q

′
2) = 1, h′q1q2 6= hq′1q

′
2.
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We have
h′ξ(q′1, b

′
1; q′2, b

′
2;n)− hξ(q1, b1; q2, b2;n)

≡ sn̄

r
+
t1n̄

q1

+
t′1n̄

q′1
+
t2(n+ kr)

q2

+
t′2(n+ kr)

q′2
(mod 1)

(12.4)

with

s ≡ a(h′q′1q
′
2 − hq1q2)(mod r), t1 ≡ −b1hq2r(mod q1), t′1 ≡ b′1h

′q′2r(mod q′1),

t2 ≡ −b2hq1r(mod q2), t′2 ≡ b′2h
′q′1r(mod q′2).

Letting d1 = [q1, q
′
1]r, d2 = [q2, q

′
2], we may rewrite (12.4) as

h′ξ(q′1, b
′
1; q′2, b

′
2;n)− hξ(q1, b1; q2, b2;n) ≡ c1n̄

d1

+
c2(n+ kr)

d2

(mod 1)

for some c1 and c2 with
(c1, r) = (h′q′1q

′
2 − hq1q2, r).

It follows by Lemma 11 that

M(h, h′; q1, b1; q2, b2; q′1, b
′
1; q′2, b

′
2)� (d1d2)1/2+ε +

(c1, d1)(d1, d2)2N

d1

. (12.5)

By (7.5) and (9.13) we have

(d1d2)1/2 � (Q4R)1/2 � x1/4+16$.

On the other hand, we have (d1, d2) ≤ (q1q
′
1, q2q

′
2)� Q2, since (q2q

′
2, r) = 1, and, similar

to (9.14),
(c1, d1) ≤ (c1, r)[q1, q

′
1]� [q1, q

′
1]H1Q

2.

It follows by (10.16), (9.13) and the first inequality in (9.12) that

(c1, d1)(d1, d2)2N

d1

� H1NQ
6R−1 � x72$.

Combining these estimates with (12.5) we deduce that

M(h, h′; q1, b1; q2, b2; q′1, b
′
1; q′2, b

′
2)� x1/4+16$+ε.

Together with (10.16), this implies that, on the right side of (12.2), the contribution from
the terms with h′q1q2 6= hq′1q

′
2 is

� x1/4+16$+εH2
1 � x1/4+33$
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which is sharper than the right side of (12.3). Combining these estimates with (12.2) we
obtain ∑

n∼N
(n,r)=1

|K(n)|2 � x1−3$+εM.

This yields, by Cauchy’s inequality,∑
n∼N

(n,r)=1

|K(n)| � x1−$. (12.6)

The estimate (10.15) follows from (12.1) and (12.6) immediately.

13. The Type III estimate: Initial steps

Assume that γ = α ∗ κN3 ∗ κN2 ∗ κN1 is of Type III. Our aim is to prove that

∆(γ; d, c)� x1−ε/2

d
(13.1)

for any d and c satisfying

(d, c) = 1, x1/2−ε < d < x1/2+2$, d|P , (d,P0) < D1,

which are henceforth assumed. This leads to (6.2).
We first derive some lower bounds for the Nj from (A4) and (A5). We have

N1 ≥ N2 ≥
(

x

MN1

)1/2

≥ x5/16−4$, (13.2)

and
N3 ≥

x

MN1N2

≥ x1/4−16$M ≥ x1/4−16$. (13.3)

Let f be as in Lemma 7 with η∗ = η and with N1 in place of M . Note that the
function κN1 − f is supported on [N−1 , N1]∪ [ηN1, ηN

+
1 ] with N±1 = (1±N−ε1 )N1. Letting

γ∗ = α ∗ κN3 ∗ κN2 ∗ f , we have

d

ϕ(d)

∑
(n,d)=1

(γ − γ∗)(n)� x1−ε/2,

and∑
n≡c(d)

(γ − γ∗)(n)� L
∑

N−1 ≤q≤N1

(q,d)=1

∑
1≤l<3x/q
lq≡c(d)

τ19(l) + L
∑

ηN1≤q≤ηN+
1

(q,d)=1

∑
1≤l<3x/q
lq≡c(d)

τ19(l)� x1−ε/2

d
.
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It therefore suffices to prove (13.1) with γ replaced by γ∗. In fact, we shall prove the
sharper bound

∆(γ∗; d, c)� x1−$/3

d
(13.4)

In a way similar to the proof of (8.2) we obtain∑
(n,d)=1

f(n) =
ϕ(d)

d
f̂(0) +O(xε).

This yields, by (13.2),

1

ϕ(d)

∑
(n,d)=1

γ∗(n) =
f̂(0)

d

∑
(m,d)=1

∑
n3'N3

(n3,d)=1

∑
n2'N2

(n2,d)=1

α(m) +O(d−1x3/4).

Here and in what follows, n ' N stands for N ≤ n < ηN . On the other hand, we have∑
n≡c(d)

γ∗(n) =
∑

(m,d)=1

∑
n3'N3

(n3,d)=1

∑
n2'N2

(n2,d)=1

α(m)
∑

mn3n2n1≡c(d)

f(n1).

The innermost sum is, by Lemma 7, equal to

1

d

∑
|h|<H∗

f̂(h/d)ed
(
− chmn3n2

)
+O(x−2),

where
H∗ = dN−1+2ε

1 .

It follows that

∆(γ∗; d, c) =
1

d

∑
m'M

(m,d)=1

∑
n3'N3

(n3,d)=1

∑
n2'N2

(n2,d)=1

α(m)
∑

1≤|h|<H∗
f̂(h/d)ed

(
− chmn3n2

)
+O(d−1x3/4).

The proof of (13.4) is therefore reduced to showing that∑
1≤h<H∗

∑
n3'N3

(n3,d)=1

∑
n2'N2

(n2,d)=1

f̂(h/d)ed
(
ahn3n2

)
� x1−$/2+2εM−1 (13.5)

for any a with (a, d) = 1.
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On substituting d1 = d/(h, d) and applying Möbius inversion, the left side of (13.5)
may be rewritten as∑

d1|d

∑
1≤h<H
(h,d1)=1

∑
n3'N3

(n3,d)=1

∑
n2'N2

(n2,d)=1

f̂(h/d1)ed1
(
ahn3n2

)
=
∑
d1d2=d

∑
b3|d2

∑
b2|d2

µ(b3)µ(b2)
∑

1≤h<H
(h,d1)=1

∑
n3'N3/b3
(n3,d1)=1

∑
n2'N2/b2
(n2,d1)=1

f̂(h/d1)ed1
(
ahb3b2n3n2

)
,

where
H = d1N

−1+2ε
1 . (13.6)

It therefore suffices to show that∑
1≤h<H
(h,d1)=1

∑
n3'N ′3

(n3,d1)=1

∑
n2'N ′2

(n2,d1)=1

f̂(h/d1)ed1
(
bhn3n2

)
� x1−$/2+εM−1 (13.7)

for any d1, b, N ′3, and N ′2 satisfying

d1|d, (b, d1) = 1,
d1N3

d
≤ N ′3 ≤ N3,

d1N2

d
≤ N ′2 ≤ N2, (13.8)

which are henceforth assumed. Note that (13.2) implies

H � x3/16+6$+ε. (13.9)

In view of (13.6), the left side of (13.7) is void if d1 ≤ N1−2ε
1 , so we may assume

d1 > N1−2ε
1 . By the trivial bound

f̂(z)� N1, (13.10)

and (3.13), we find that the left side of (13.7) is

� HN3N1

(
d

1/2+ε
1 + d−1

1 N2

)
� d

3/2+ε
1 N2ε

1 N3.

In the case d1 ≤ x5/12−6$, the right side is� x1−$+3εM−1 by (A4) and (2.13). This leads
to (13.7). Thus we may further assume

d1 > x5/12−6$. (13.11)

We appeal to the Weyl shift and the factorization (2.8) with d1 in place of d. By
Lemma 4, we can choose a factor r of d1 such that

x44$ < r < x45$. (13.12)
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Write
N (d1, k) =

∑
1≤h<H
(h,d1)=1

∑
n3'N ′3

(n3,d1)=1

∑
n2'N ′2

(n2+hkr,d1)=1

f̂(h/d1)ed1
(
bh(n2 + hkr)n3

)
,

so that the left side of (13.7) is just N (d1, 0). Assume k > 0. We have

N (d1, k)−N (d1, 0) = Q1(d1, k)−Q2(d1, k), (13.13)

where
Qi(d1, k) =

∑
1≤h<H
(h,d1)=1

∑
n3'N ′3

(n3,d1)=1

∑
l∈Ii(h)
(l,d1)=1

f̂(h/d1)ed1
(
bhln3

)
, i = 1, 2,

with
I1(h) =

[
ηN ′2, ηN

′
2 + hkr

)
, I2(h) =

[
N ′2, N

′
2 + hkr

)
.

To estimate Qi(d1, k) we first note that, by Möbius inversion,

Qi(d1, k) =
∑
st=d1

µ(s)
∑

1≤h<H/s

∑
n3'N ′3

(n3,d1)=1

∑
l∈Ii(h)
(l,d1)=1

f̂(h/t)et
(
bhln3).

The inner sum is void unless s < H. Since H2 = o(d1) by (13.9) and (13.11), it follows,
by changing the order of summation, that

|Qi(d1, k)| ≤
∑
st=d1
t>H

∑
n3'N ′3

(n3,d1)=1

∑
l∈Ii(H)
(l,d1)=1

∣∣∣∣ ∑
h∈Ji(s,l)

f̂(h/t)et
(
bhln3)

∣∣∣∣,
where Ji(s, l) is a certain interval of length < H and depending on s and l. Noting that,
by integration by parts,

d

dz
f̂(z)� min

{
N2

1 , |z|−2N ε
1

}
,

by partial summation and (13.10) we obtain∑
h∈Ji(s,l)

f̂(h/t)et
(
bhln3)� N1+ε

1 min
{
H, ||bln3/t||−1

}
.

It follows that

Qi(d1, k)� N1+ε
1

∑
t|d1
t>H

∑
l∈Ii(H)
(l,d1)=1

∑
n3<2N3

(n3,d1)=1

min
{
H, ||bln3/t||−1

}
.

Since H = o(N3) by (13.3) and (13.9), the innermost sum is � N1+ε
3 by Lemma 9. In

view of (13.6), this leads to
Qi(d1, k)� d1+ε

1 krN3. (13.14)
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We now introduce the parameter

K = [x−1/2−48$N1N2] (13.15)

which is � x1/8−56$ by (13.2). By (A5) and the second inequality in (13.12), we see that
the right side of (13.14) is � x1−$+εM−1 if k < 2K. Hence, by (13.13), the proof of
(13.7) is reduced to showing that

1

K

∑
k∼K

N (d1, k)� x1−$/2+εM−1. (13.16)

14. The Type III estimate: Completion

The aim of this section is to prove (13.16) that will complete the proof of Theorem 2.
We start with the relation

h(n2 + hkr) ≡ l + kr (mod d1)

for (h, d1) = (n2 + hkr, d1) = 1, where l ≡ h̄n2 (mod d1). Thus we may rewrite N (d1, k)
as

N (d1, k) =
∑

l( mod d1)
(l+kr,d1)=1

ν(l; d1)
∑
n3'N ′3

(n3,d1)=1

ed1
(
b(l + kr)n3

)
with

ν(l; d1) =
∑′

h̄n2≡l(d1)

f̂(h/d1).

Here
∑′

is restriction to 1 ≤ h < H, (h, d1) = 1 and n2 ' N ′2. It follows by Cauchy’s

inequality that ∣∣∣∣∑
k∼K

N (d1, k)

∣∣∣∣2 ≤ P1P2, (14.1)

where

P1 =
∑

l( mod d1)

|ν(l; d1)|2, P2 =
∑

l( mod d1)

∣∣∣∣ ∑
k∼K

(l+kr,d1)=1

∑
n'N ′3

(n,d1)=1

ed1
(
b(l + kr)n

)∣∣∣∣2.
The estimation of P1 is straightforward. By (13.10) we have

P1 � N2
1 #{(h1, h2;n1, n2) : h2n1 ≡ h1n2(mod d1), 1 ≤ hi < H, ni ' N ′2}.
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The number of the 4-tuples (h1, h2; , n1, n2) satisfying the above conditions is

�
∑

l( mod d1)

( ∑
1≤m<2HN2
m≡l(d1)

τ(m)

)2

.

Since HN2 � d1+ε
1 by (13.6), it follows that

P1 � d1+ε
1 N2

1 . (14.2)

The estimation of P2 is more involved. We claim that

P2 � d1x
3/16+52$+εK2. (14.3)

Write d1 = rq. Note that
N ′3
r
� x1/6−69$ (14.4)

by (13.8), (13.11), (13.3) and the second inequality in (13.12). Since∑
n'N ′3

(n,d1)=1

ed1
(
b(l + kr)n) =

∑
0≤s<r
(s,r)=1

∑
n'N ′3/r

(nr+s,q)=1

ed1
(
b(l + kr)(nr + s)) +O(r),

it follows that ∑
k∼K

(l+kr,d1)=1

∑
n'N ′3

(n,d1)=1

ed1
(
b(l + kr)n

)
= U(l) +O(Kr),

where
U(l) =

∑
0≤s<r
(s,r)=1

∑
k∼K

(l+kr,d1)=1

∑
n'N ′3/r

(nr+s,q)=1

ed1
(
b(l + kr)(rn+ s)

)
.

Hence,

P2 �
∑

l( mod d1)

|U(l)|2 + d1(Kr)2. (14.5)

The second term on the right side is admissible for (14.3) by the second inequality in
(13.12). On the other hand, we have∑

l( mod d1)

|U(l)|2 =
∑
k1∼K

∑
k2∼K

∑
0≤s1<r
(s1,r)=1

∑
0≤s2<r
(s2,r)=1

V (k2 − k1; s1, s2), (14.6)

where

V (k; s1, s2) =
∑

n1'N ′3/r
(n1r+s1,q)=1

∑
n2'N ′3/r

(n2r+s2,q)=1

∑′

l( mod d1)

ed1
(
bl(n1r + s1)− b(l + kr)(n2r + s2)

)
.
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Here
∑′

is restriction to (l, d1) = (l + kr, d1) = 1.

To handle the right side of (14.6) we first note that if l ≡ l1r + l2q(mod d1), then the
condition (l(l + kr), d1) = 1 is equivalent to (l1(l1 + k), q) = (l2, r) = 1. In this situation,
by the relation

1

d1

≡ r̄

q
+
q̄

r
(mod 1)

we have

l(n1r + s1)− (l + kr)(n2r + s2)

d1

≡ r2l1(n1r + s1)− r2(l1 + k)(n2r + s2)

q
+
q2s1s2l2(s2 − s1)

r
(mod 1).

Thus the innermost sum in the expression for V (k; s1, s2) is, by the Chinese remainder
theorem, equal to

Cr(s2 − s1)
∑

l( mod q)
(l(l+k),q)=1

eq
(
br2l(n1r + s1)− br2(l + k)(n2r + s2)

)
.

It follows that
V (k; s1, s2) = W (k; s1, s2)Cr(s2 − s1), (14.7)

where

W (k; s1, s2) =
∑

n1'N ′3/r
(n1r+s1,q)=1

∑
n2'N ′3/r

(n2r+s2,q)=1

∑′

l( mod q)

eq
(
br2l(n1r + s1)− br2(l + k)(n2r + s2)

)
.

Here
∑′

is restriction to (l(l + k), q) = 1.

By virtue of (14.7), we estimate the contribution from the terms with k1 = k2 on the
right side of (14.6) as follows. For (n1r + s1, q) = (n2r + s2, q) = 1 we have∑∗

l( mod q)

eq
(
br2l(n1r + s1)− br2l(n2r + s2)

)
= Cq((n1 − n2)r + s1 − s2).

On the other hand, since N ′3 � x1/3, by (13.11) and the second inequality in (13.12) we
have

N ′3
d1

� x−1/12+6$ � r−1. (14.8)

This implies N ′3/r = o(q), so that∑
n'N ′3/r

|Cq(nr +m)| � q1+ε
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for any m. It follows that
W (0; s1, s2)� q1+εr−1N ′3.

Inserting this into (14.7) and using the simple estimate∑
0≤s1<r

∑
0≤s2<r

|Cr(s2 − s1)| � r2+ε,

we deduce that ∑
0≤s1<r
(s1,r)=1

∑
0≤s2<r
(s2,r)=1

V (0; s1, s2)� d1+ε
1 N3.

It follows that the contribution from the terms with k1 = k2 on the right side of (14.6) is
� d1+ε

1 KN3 which is admissible for (14.3), since

K−1N3 � x1/2+48$N−1
1 � x3/16+52$

by (13.15) and (13.2). The proof of (14.3) is therefore reduced to showing that∑
k1∼K

∑
k2∼K
k2 6=k1

∑
0≤s1<r
(s1,r)=1

∑
0≤s2<r
(s2,r)=1

V (k2 − k1; s1, s2)� d1x
3/16+52$+εK2. (14.9)

In view of (14.4) and (14.8), letting

n′ = min{n : n ' N ′3/r}, n
′′

= max{n : n ' N ′3/r},

we may rewrite W (k; s1, s2) as

W (k; s1, s2) =
∑
n1≤q

(n1r+s1,q)=1

∑
n2≤q

(n2r+s2,q)=1

∑′

l( mod q)

F (n1/q)F (n2/q)

× eq
(
br2l(n1r + s1)− br2(l + k)(n2r + s2)

)
,

where F (y) is a function of C2[0, 1] class such that

0 ≤ F (y) ≤ 1,

F (y) = 1 if
n′

q
≤ y ≤ n

′′

q
,

F (y) = 0 if y /∈
[
n′

q
− 1

2q
, ,

n
′′

q
+

1

2q

]
,

and such that the Fourier coefficient

κ(m) =

∫ 1

0

F (y)e(−my) dy
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satisfies

κ(m)� κ∗(m) := min

{
1

r
,

1

|m|
,
q

m2

}
. (14.10)

Here we have used (14.8). By the Fourier expansion of F (y) we obtain

W (k; s1; s2) =
∞∑

m1=−∞

∞∑
m2=−∞

κ(m1)κ(m2)Y (k;m1,m2; s1, s2), (14.11)

where

Y (k;m1,m2; s1, s2) =
∑
n1≤q

(n1r+s1,q)=1

∑
n2≤q

(n2r+s2,q)=1

∑′

l( mod q)

eq
(
δ(l, k;m1,m2;n1, n2; s1, s2)

)

with

δ(l, k;m1,m2;n1, n2; s1, s2) = br2l(n1r + s1)− br2(l + k)(n2r + s2) +m1n1 +m2n2.

Moreover, if njr + sj ≡ tj(mod q), then nj ≡ r̄(tj − sj)(mod q), so that

m1n1 +m2n2 ≡ r̄(m1t1 +m2t2)− r̄(m1s1 +m2s2) (mod q).

Hence, on substituting njr + sj = tj, we may rewrite Y (k;m1,m2; s1, s2) as

Y (k;m1,m2; s1, s2) = Z(k;m1,m2)eq
(
− r̄(m1s1 +m2s2)

)
, (14.12)

where

Z(k;m1,m2) =
∑∗

t1( mod q)

∑∗

t2( mod q)

∑′

l( mod q)

eq
(
br2lt1 − br2(l + k)t2 + r̄(m1t1 +m2t2)

)
.

It follows from (14.7), (14.11) and (14.12) that

∑
0≤s1<r
(s1,r)=1

∑
0≤s2<r
(s2,r)=1

V (k; s1, s2) =
∞∑

m1=−∞

∞∑
m2=−∞

κ(m1)κ(m2)Z(k;m1,m2)J(m1,m2), (14.13)

where
J(m1,m2) =

∑
0≤s1<r
(s1,r)=1

∑
0≤s2<r
(s2,r)=1

eq
(
− r̄(m1s1 +m2s2)

)
Cr(s2 − s1).

We now appeal to Lemma 12. By simple substitution we have

Z(k;m1,m2) = T (k, bm1r̄
3,−bm2r̄

3; q),
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so Lemma 12 gives
Z(k;m1,m2)� (k, q)1/2q3/2+ε,

the right side being independent of m1 and m2. On the other hand, we have the following
estimate that will be proved later

∞∑
m1=−∞

∞∑
m2=−∞

κ∗(m1)κ∗(m2)|J(m1,m2)| � r1+ε. (14.14)

Combining these two estimates with (14.13) we obtain∑
0≤s1<r
(s1,r)=1

∑
0≤s2<r
(s2,r)=1

V (k; s1, s2)� (k, q)1/2q3/2+εr1+ε.

This leads to (14.9), since

q1/2 = (d1/r)
1/2 < x1/4−21$ = x3/16+52$

by the first inequality in (13.12), and∑
k1∼K

∑
k2∼K
k2 6=k1

(k2 − k1, q)
1/2 � qεK2,

whence (14.3) follows.
The estimate (13.16) follows from (14.1)-(14.3) immediately, since

N1 ≤ x3/8+8$M−1, d1 < x1/2+2$,
31

32
+ 36$ = 1− $

2
.

It remains to prove (14.14). The left side of (14.14) may be rewritten as

1

r

∞∑
m1=−∞

∞∑
m2=−∞

∑
0≤k<r

κ∗(m1)κ∗(m2 + k)|J(m1,m2 + k)|.

In view of (14.10), we have
∞∑

m=−∞

κ∗(m)� L,

and κ∗(m + k) � κ∗(m) for 0 ≤ k < r, since r < q by (13.11) and the second inequality
in (13.12). Thus, in order to prove (14.14), it suffices to show that∑

0≤k<r

|J(m1,m2 + k)| � r2+ε (14.15)
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for any m1 and m2.
Substituting s2 − s1 = t and applying Möbius inversion we obtain

J(m1,m2) =
∑
|t|<r

Cr(t)
∑
s∈It

(s(s+t),r)=1

eq
(
− r̄(m2t+ (m1 +m2)s)

)

�
∑
|t|<r

|Cr(t)|
∑
r1|r

∣∣∣∣ ∑
s∈It

s(s+t)≡0(r1)

eq
(
r̄(m1 +m2)s

)∣∣∣∣, (14.16)

where It is a certain interval of length < r and depending on t. For any t and square-free
r1, there are exactly τ(r1/(t, r1)) distinct residue classes (mod r1) such that

s(s+ t) ≡ 0 (mod r1)

if and only if s lies in one of these classes. On the other hand, if r = r1r2, then∑
s∈It

s≡a(r1)

eq
(
r̄(m1 +m2)s

)
� min

{
r2, ||r̄2(m1 +m2)/q||−1

}

for any a. Hence the inner sum on the right side of (14.16) is

� τ(r)
∑
r2|r

min
{
r2, ||r̄2(m1 +m2)q||−1

}
which is independent of t. Together with the simple estimate∑

|t|<r

|Cr(t)| � τ(r)r,

this yields

J(m1,m2)� τ(r)2r
∑
r2|r

min
{
r2, ||r̄2(m1 +m2)/q||−1

}
.

It follows that the left side of (14.15) is

� τ(r)2r
∑
r1r2=r

∑
0≤k1<r1

∑
0≤k2<r2

min
{
r2, ||r̄2(m1 +m2 + k1r2 + k2)/q||−1

}
. (14.17)

Assume r2|r. By the relation

r̄2

q
≡ − q̄

r2

+
1

qr2

(mod 1),
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for 0 ≤ k < r2 we have

r̄2(m+ k)

q
≡ r̄2m

q
− q̄k

r2

+O

(
1

q

)
(mod 1).

This yields ∑
0≤k<r2

min
{
r2, ||r̄2(m+ k)/q||−1

}
� r2L (14.18)

for any m. The estimate (14.15) follows from (14.17) and (14.18) immediately.
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