SDN/NFV—网络与分布式系统的统一
陈怀临，弯曲评论
www.valleytalk.org
Top of mind for C-level executives

NFV tops the list of important trends

- 80% of executives (including 84% of CIOs and 76% of CTOs) surveyed said that the move to NFV is a top trend impacting their role.
- 36% chose the move to NFV as the most important trend.
- NFV will be a major player in the single most important CSP market within three years according to 93% of respondents.
Top of mind for C-level executives

NFV tops the list of important trends

80% of executives (including 84% of CIOs and 76% of CTOs) surveyed said that the move to NFV is a top trend impacting their role. 36% chose the move to NFV as the most important trend. NFV will be a major player in the single most important CSP market within three years according to 93% of respondents.
NFV out-trends SDN

Trends impacting your role - fig. 1
- The move to network functions virtualization: 80%
- Advances in mobility technologies, etc.: 69%
- The move to virtualization and cloud computing technologies: 66%
- The move to software defined networking: 49%

Single most important trend affecting your role - fig. 2
- The move to software defined networking: 14%
- The move to virtualization and cloud computing technologies: 22%
- Advances in mobility technologies, etc.: 28%
- The move to network functions virtualization (NFV): 36%
NFV to significantly impact CSPs
What is SDN/NFV?
What’s new with SDN/NFV?

Four Innovations of NFV

1. Software implementation of network
2. Network Function Modules
3. Implementation in Virtual Machines
4. Standard API’s between Modules
What’s new with SDN/NFV?

Network Function Virtualization (NFV)

1. Fast standard hardware \Rightarrow **Software based Devices**
 Routers, Firewalls, Broadband Remote Access Server (BRAS)
 \Rightarrow A.k.a. **white box** implementation

2. **Function Modules** (Both data plane and control plane)
 \Rightarrow DHCP (Dynamic Host control Protocol), NAT (Network Address Translation), Rate Limiting,
What’s new with SDN/NFV?

NFV (Cont)

3. **Virtual Machine implementation**
 ⇒ Virtual appliances
 ⇒ All advantages of virtualization (quick provisioning, scalability, mobility, Reduced CapEx, Reduced OpEx, …)

![Diagram showing virtual machines and hypervisor]

4. **Standard APIs:** New ISG (Industry Specification Group) in ETSI (European Telecom Standards Institute) set up in November 2012
Why We need NFV?

1. **Virtualization**: Use network resource without worrying about where it is physically located, how much it is, how it is organized, etc.
2. **Orchestration**: Manage thousands of devices
3. **Programmable**: Should be able to change behavior on the fly.
4. **Dynamic Scaling**: Should be able to change size, quantity
5. **Automation**
6. **Visibility**: Monitor resources, connectivity
7. **Performance**: Optimize network device utilization
8. **Multi-tenancy**
9. **Service Integration**
10. **Openness**: Full choice of Modular plug-ins
Essence of SDN/NFV

* A new business process methodology for Carriers, rather than a new technology

*Service Providers become enterprises. Huge new revenue streams for both SP and NFV software providers, e.g., VNO (Virtual Network Operator)
SDN & NFV will play together

- Open Innovation
 - Creates competitive supply of innovative applications by third parties.

- Software Defined Networks
 - Creates network abstractions to enable faster innovation.

- Network Functions Virtualisation
 - Reduces CAPEX, OPEX, space & power consumption.
<table>
<thead>
<tr>
<th>Category</th>
<th>SDN</th>
<th>NFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raison d'etre</td>
<td>Programmability of network separation of data and control, centralization and control of</td>
<td>Transition to general-purpose server appliance from a dedicated network of function</td>
</tr>
<tr>
<td>Users of the target</td>
<td>Campus, data center / cloud</td>
<td>Service provider network</td>
</tr>
<tr>
<td>Device to the target</td>
<td>Switch and general-purpose server</td>
<td>Switch and general-purpose server</td>
</tr>
<tr>
<td>Initial application</td>
<td>Networking and cloud orchestration</td>
<td>Warranty router, firewall, gateway, CDN, WAN accelerators, the SLA</td>
</tr>
<tr>
<td>New protocol</td>
<td>OpenFlow</td>
<td>None yet</td>
</tr>
<tr>
<td>Standardization</td>
<td>Open Networking Forum (ONF)</td>
<td>ETSI NFV working group</td>
</tr>
</tbody>
</table>
云平台, 网络虚拟化, SDN

配置/策略控制
OpenStack

网络虚拟化

SDN

L2/L3 网络i

L2/L3 网络j

L2/L3 网络k

Physical Network
云平台, 网络虚拟化, SDN, NFV
SDN & NFV working together
SDN & NFV working together (cont.)
SDN & NFV Use Cases

NFV Use Cases

- **Cloud:**
 1. NFV infrastructure as a service (NFV IaaS) like IaaS
 2. Virtual Network Functions (VNFs) as a service (VNFaaS) like SaaS
 3. VNF forwarding graphs (Service Chains)
 4. Virtual Network Platform as a Service (VN PaaS) like PaaS

- **Mobile:**
 5. Virtualization of the Mobile Core Network and IMS
 6. Virtualization of Mobile Base Station

- **Data Center:**
 7. Virtualization of CDNs

- **Access/Residential:**
 8. Virtualization of the Home environment
 9. Fixed Access NFV

Ref: ETSI, “NFV Use Cases,” http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
SDN/NFV—商业机会
Ready or not, the change is coming!
Case 1:

- **Application Centric Network:**
 - ADC seamlessly guide SDN Controller providing L7 intelligence

Case 2:

- **Virtualized Network Functions for clouds service provider or/and service providers**
 - vADC is NFV’s killer application
“In the cloud data center, we mostly hear about NFV applications, such as, virtual application delivery controllers (vADCs) with end customers and virtual firewalls (vFWs). In the CSP environment, NFV applications is mostly about virtual customer premises equipment (vCPE), and virtual evolved packet core (vEPC). For this article, we will focus on the most popular NFV use cases in cloud data centers and outline what you should do this year to lay the groundwork for NFV (I’ll cover the CSP use cases in depth in a future article). We see vFWs and vADCs as the two main technologies driving use cases for NFV applications in the cloud data center because both provide key functionality in the cloud environment. However, vADCs in many ways look like the most likely candidate to be one of the first apps broadly deployed to customers.”
“For apps developed and deployed in cloud environments, the ADC is a critical piece of the entire application environment that needs to be virtualized as a system and have the ability to move the entire application environment to any data center of choice. Many of these applications use ADCs in multiple layers within the cloud application such as the application front-end (i.e., a web server or API front-end) or back-end (i.e., balancing requests to back-end data stores and third-party applications), which makes ADCs a key component of the overall application architecture.”
ADC virtual appliance revenue grew by 88% over the past year in the data center network market.
Summary: NFV Opportunity

Clouds: HPC(Hybrid Private Cloud)VPC(Virtual Private Cloud) Business

Tenants need their own virtual L2/ L3 virtualized network inside a public cloud. Need vADC

Service Provider: vEPC, vBRAS, vCDN

Mobile Core and Access Network need ADC and Security functions for nested service train.
Corresponding Initiatives
ETSI NFV ISG

Industry Specification Group (ISG)’s goal is to define the requirements.

Four Working Groups:
- **INF**: Architecture for the virtualization Infrastructure
- **MANO**: Management and orchestration
- **SWA**: Software architecture
- **REL**: Reliability and Availability, resilience and fault tolerance

Two Expert Groups:

- **Security** Expert Group: Security
- **Performance and Portability** Expert Group: Scalability, efficiency, and performance VNFs relative to current dedicated hardware
NFV projects start to emerge

- NTT Docomo Completes NFV Trial With Multiple Vendors in **October, 2014**

- NTT Docomo targets commercial NFV launch by **March 2016**
NTT concept for NFV deployment

- Rapid service provision based on user selection of network function
- Verification of service chaining method in multivendor environment
<table>
<thead>
<tr>
<th>NFV ISG PoC</th>
<th>NFV Use Case</th>
<th>Operators</th>
<th>Vendors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CloudNFV Open NFV Framework</td>
<td>Use Case #5 Virtualization of the Mobile Core and IMS</td>
<td>Sprint Telefonica</td>
<td>6Wind Dell Enterprise Web Huawei Mellanox Overture Qosmos</td>
</tr>
<tr>
<td>Service Chaining for NW Function Selection in Carrier Networks</td>
<td>Use Case #2 Virtual Network Function as a Service (VNFAas) Use Case #4 Virtual Network Forwarding Graphs</td>
<td>NTT</td>
<td>Cisco HP Juniper</td>
</tr>
<tr>
<td>Virtual Function State Migration and Interoperability</td>
<td>Use Case #1 NFV Infrastructure as a Service (NFVaaS)</td>
<td>AT&T BT</td>
<td>Broadcom Tieto</td>
</tr>
<tr>
<td>Multi-vendor Distributed NFV</td>
<td>Use Case #2 VNFAas Use Case #4 Virtual Network Forwarding Graphs</td>
<td>CenturyLink</td>
<td>Certes Cyan Fortinet RAD</td>
</tr>
<tr>
<td>E2E vEPC Orchestration in a multi-vendor open NFVI environment</td>
<td>Use Case #1 NFVIaaS</td>
<td>Sprint Telefonica</td>
<td>Connectem Cyan Dell Intel</td>
</tr>
<tr>
<td>Virtualised Mobile Network with Integrated DPI</td>
<td>Use Case #2 VNFAaaS</td>
<td>Telefonica</td>
<td>HP Intel Qosmos Tieto Wind River</td>
</tr>
<tr>
<td>Use Case #5 Virtualization of the Mobile Core and IMS</td>
<td>Use Case #5 Virtualization of the Mobile Core and IMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use Case #6 Virtualisation of Mobile base station</td>
<td>Use Case #6 Virtualisation of Mobile base station</td>
<td>China Mobile</td>
<td>Alcatel-Lucent Intel Wind River</td>
</tr>
<tr>
<td>C-RAN virtualisation with dedicated hardware accelerator</td>
<td>Use Case #6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automated Network Orchestration</td>
<td>Use Case #1 NFVIaaS</td>
<td>Deutsche Telekom</td>
<td>Ericsson x-ion</td>
</tr>
<tr>
<td>VNF Router Performance with DDoS Functionality</td>
<td>Use Case #2 VNFAaaS</td>
<td>AT&T Telefonica</td>
<td>Brocade Intel</td>
</tr>
</tbody>
</table>
* AT&T Domain 2.0 Project: vEPC

* British Telcom: vBRAS, vCDN

* Deutsche Telcom: vDHCP, vBRAS,

* NEC: vEPC, vBRAS, vCGNAT
Completed: PoC

- **PoC#2 - Service Chaining for NW Function Selection in Carrier Networks**
 NTT - Cisco - HP - Juniper Networks
- **PoC#3 - Virtual Function State Migration and Interoperability**
- **PoC#4 - Multi-vendor Distributed NFV**
 CenturyLink - Certes - Cyan - Fortinet
- **PoC#5 - E2E vEPC Orchestration in a multi-vendor open NFVI environment**
Completed: PoC

- **PoC#8 - Automated Network Orchestration**
 Deutsche Telekom - Ericsson - x-ion GmbH - Deutsche Telekom Innovation Laboratories *

- **PoC#9 - VNF Router Performance with DDoS Functionality**
 AT&T - Telefonica - Brocade - Intel - Spirent

- **PoC#11 - Multi-Vendor on-boarding of vIMS on a cloud management framework**
 Deutsche Telekom - Huawei Technologies - Alcatel-Lucent

- **PoC#22 - Demonstration of High Reliability and Availability aspects in a Multivendor NFV Environment**
 AT&T - KDDI R&D Laboratories - Brocade - Hewlett Packard - Wind River System *
Completed: PoC (Cont.)

• 1. Virtual Broadband Remote Access Server (BRAS) by British Telecom

• 2. Virtual IP Multimedia System (IMS) by Deutsche Telekom

• 3. Virtual Evolved Packet Core (vEPC) by Orange Silicon Valley

• 4. Carrier-Grade Network Address Translator (CGNAT) and Deep Packet Inspection (DPI), Home Gateway by Telefonica

• 5. Perimeta Session Border Controller (SBC) from Metaswitch

• 6. Deep packet inspection from Procera

• Most of these are based on Cloud technologies, e.g., OpenStack
OPEN NFV
40 telecomm and network companies, such as AT&T, Cisco, HP, NTT DOCOMO, Telecom Italia and Vodafone, China Mobile

Joined forces with The Linux Foundation to create a new collaborative project: Open Platform for NFV, (OPNFV). The ultimate goal to build a carrier-grade, integrated, open source NFV reference platform.
Proposed Projects

Copper (Virtual Infrastructure Deployment Policies)

Resource Management

Doctor (Fault Management and Maintenance)

High availability for VNFs //中国移动

OPNFV Telco KPI Monitoring
Proposed Projects

- Rescuer
- IPv6-enabled Vanilla OPNFV
- Parser
- Octopus - Continuous Integration
- OPNFV Documentation
ETSI NFV Suggested Research Topics
--Security of the virtualized infrastructure for network functions

--Abstractions for networks and carrier-scale network services in imperative and declarative languages

--Impacts of data plane workloads on Computer Systems Architectures

--Locality and latency in software implementations of large-scale network services

--Re-architecting network functions (e.g. 3GPP) to recognize availability of cloud technology mechanisms for scalability and reliability of NFV on ecosystems
--Evolution patterns to NFV, management of transition and heterogeneous scenarios

--Portability mechanisms and management across NFV infrastructure realizations

--Tools for validating network services and automating their deployment and management

--Applying compositional patterns (Network Function Chains) for parallelism, control logic, performance, monitoring and reliability of network services
Monitoring and metering of carrier-scale virtualized networks. Application of Big Data models
Addressing the privacy implications of the new virtualized network service models. Relying on NFV to increase user privacy at the network scale
Explore how the new virtualization support paradigms can facilitate new network concepts and architectures
Operationalization of NFV with diagnostic and support frameworks
Commercial and Economic impact of NFV on ecosystems
Autonomic (self) management technologies in NFV (e.g., processing of alarms)
Complexity of NFV systems

Energy Efficiency of NFV systems

Performance optimization, trade-offs & planning rules for multiple VNF workloads

New service modelling and algorithms for automatic changes of virtual network services architecture

What "Next Big Thing(s)" will be enabled post-NFV?
Thank you!