System Issues for High End Security Appliances Design

Huailin Chen

www.valleytalk.org
huailin@gmail.com

Abstract

The design and implementation of high-end security appli-
ances is a major challenge requiring high throughput, excel-
lent manageability, reliability, and the ability to debug the
system.

In this paper, we outline the challenges we faced in the past
decade when doing system design. We will share our solu-
tions, the tradeoffs we made, and concluded with a success-
ful design that was conceived mostly from a bottoms up evo-
lution instead of a top down design. We argue that most of
the problems we experienced are common to the whole tele-
com sector. We believe that system researchers should pay
more attention to the problems that we experienced.

Keywords Operating System, Security, Appliance, Schedul
ing, Memory Management, Availability, Multi-Core, Inte-
gration

1. System Definition

A system is usually defined as a set of interacting or interde-
pendent components forming an integrated whole [1].

An operating system (OS) is software that manages com-
puter hardware and software resources and provides com-
mon services for computer programs. The operating system
is an essential component of the system software in a com-
puter system. Application programs usually require an oper-
ating system to function [2].

In industry, especially the communication sector, the se-
mantics of system or operating systems are different than
in an academic setting. A commercial system is specifically
designed for use in switches, routers, firewalls and other de-
vices. Academics tend to focus on kernel level functionality.
Linux, FreeBSD, or VxWorks are examples of kernel level
software. Most companies start with kernel level services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CONF ’yy, Month d—d, 20yy, City, ST, Country.

Copyright © 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Jin Shang

www.hillstonenet.com
jshang@hillstonenet.com

Dongyi Jiang
www.hillstonenet.com
dyjiang®@bhillstonenet.com

and then modify and build upon these kernels to create their
operating systems. Ciscos IoS, Junipers JUNOS, NetScreens
ScreenOS, and Hillstones StoneOS are examples of operat-
ing systems built on kernels [3.,4,5,6].

Applications

Figure 1. System Viewpoint

A stateful security appliance (firewall) typifies the chal-
lenges many industries face because it requires high high
throughput performance, but also excellent management ca-
pability, high availability and debug-ability.

We have been working on the design and development of se-
curity appliances for the past 15 years. The appliances range
from 10Gbps to 350Gbps. In this paper, we discuss some of
the system issues we experienced and briefly share the so-
lutions and tradeoffs we have made. One of the reasons for
submitting this paper is to encourage the research commu-
nity to pay more attention to the problems experienced by
commercial enterprises.

This paper is organized as follows. In section 2, we provide
a simple classification of security firewalls and explain why
stateful systems have been a challenge from a system design
viewpoint. In section 3, we will examine system issues and
discuss the challenges that academic researchers might want
to tackle.

2. Stateful Security Appliances

A security appliance is composed of a control plane, a data
plane, a management plane, and a debug plane. Most peo-
ple combine the control, management and debug planes to-
gether, and (for simplicity) only classify a system with con-
trol and data planes.

We further divide systems into high-end or low end with the

following criteria: If the data plane is supported by dedicated
line-cards, we call it a high-end appliance. It is a low-end ap-
pliance if the data plane and control plane share a CPU or a
multicore/NPU chipsets.

Control ‘ l Control
: 1

Data .
Data

High End

Low End

Figure 2. Low and High-end Architectures

In the above diagram, the dotted line represents the first
packet of a stateful session. For most firewall/security prod-
ucts the first packet of a connection needs to be forwarded
to the CPU so that a session can be established and installed
to the ASICs and/or NPUs. This establishes that subsequent
traffic belongs to this session and can pass- through the ap-
pliance without the CPUs involvement.

3. System Issues and Tradeoffs
3.1 Control Plane vs. Data Plane

For appliances, what does the system mean?

Control Plane

l Data Path ‘

l Control Path‘

| System Interconnect |

Data Plane

| Control Path‘ |Data Path |

Figure 3. A Modern Packet Processing System

A telecom system is logically divided into two subsys-
tems:Control Plane (CP) and Data Plan (DP). The control
plane is usually composed of a set of processes plus either
a proprietary OS or an open source OS, for instance, Vx-
Works, Linux, Freebsd, QNX, to name a few. The data plane
usually consists of line cards or service cards. Each line or
service card is designed with a control CPU and a few NPU
or ASICs that are dedicated for packet processing.

Control Planes and Data Plans have both control paths and
data paths. [7] Control path usually means the logics that are
responsible for configuration, setting up initial status and
event reporting. For illustration purpose, lets consider high-
end appliances. The data plane refers to line cards or service

cards.

The line card has two components: (1) the control cpu which
is responsible for configuration and is the control path of the
data plane. (2) NPU or ASICs that perform packet process-
ing and is the data path of the data plane.

Similarly the control planes control path is responsible for
configuration and database while the data path has dynamic
routing processes PKI services and other work-flow that are
tightly related to data planes.

Therefore, we define a system as follows:

System::=[Control Plane] [Data Plane]
Control Plane(CP)::=[CP Control Path] [CP Data Path]
Data Plane(DP)::=[DP Control Path] [DP Data Path]

Over the past years system architects have moved features
from the data path in the control plane to the control path
in the data plane. A typical example is Public Key Infras-
tructure (PKI). PKI is computing intensive and is the control
path of IPSEC VPN. The IPSEC data path resides in the data
path of the data plane. Consequently, if PKI can be moved
to the control path of the data plane, the system should have
better performance.

One of the reasons that this architecture makes sense is that
the CPU capacity in the data plane has become very pow-
erful and their performance in the line/service cards would
essentially be wasted after system booted up.

Acceleration techniques are also being employed on the data
plane where cpu intensive data path software is being moved
into hardware.

In short, the industry is optimizing design topology to avoid
communications overhead and congestion that system inter-
connects may introduce.

Data Path has two parts: Slow Path and Fast Path.

Data Path = (Slow Path, Fast Path)

Slow Path generally implies that the architecture cannot be
accelerated. Fast path implies that the design is capable of
improved performance during the next rev of the product.
We have found that this consensus understanding of system
design has brought helpful insights when we refresh a prod-
uct line, or when we convert a high end product to a middle
or low-end product.

3.2 Process Based Protection

Process based programming provides many benefits and is
the primary reason that telecom companies have been mi-
grating from VxWorks to either Linux or Freebsd.

For most of our products we use multi-thread/single process
or a hybrid multi thread/multi process model. Few compa-
nies in our industry use a single thread/multi process model.

Memory protection among user level processes plays a crit-
ical role in our designs. However, shared memory based
multi-threading can be a problem. A bad pointer access
from one thread can easily destroy the whole processs data,
bss,and heap as well as other threads private data.

Even though POSIX and other OSs provide some stack
protection different threads in the same process still share
a common protection. For example, with TLS(Task Local
Storage), a thread can have its own tbss and tdata sections.
However, these sections have no protection at all when a
malicious pointer access happens. [9, 10]

Figure 4. Process Based Protection

Memory corruption is responsible for most system instabil-
ities issues and is one of the toughest issues to identify and
fix.

In our proprietary OS we use a thread level local stack and
a heap mechanism to provide granular protection. First, we
split the heap space of a process into a Local heap and Global
heap. All threads share Global heaps while local heaps (fixed
size) are bound to a single thread. All local heap and stacks
are guarded by MMU based protection.

Figure 5. Thread Level Protection

Our proprietary heap protection affords system stability
and reliability. Our experience has shown that most system
crashes are due to bad pointer usage.

3.3 Scheduling Mechanism

Traditional OS scheduling mechanisms do not meet our re-
quirements. The reason comes from the basic understanding
of a system: What object is to be scheduled?

For traditional OSes, the scheduling algorithms are mainly
concerned about CPU time. It is a Time Oriented Sched-

uler[7,8,9].

For firewalls, as well as other communication appliances,
the basic object to be scheduled is the data packet. It is of
throughput-oriented scheduling mechanism.

Figure 6 is an illustration that shows the scheduler from our
viewpoint.

We think that the events in a system are only composed of
traffic and keyboard being hit. Otherwise, the whole system
is totally idle. System can contribute all computing capabil-
ities to process through traffic if no CLI task was activated
for running state.

When working under multicore chips for product design,
most of our scheduling policy was using CPU affinity to lock
software threads onto pre-allocated hardware threads. And
a proprietary packet scheduler took over the whole system,
having an out of order packet engine that accepts, process
packets. And one or more dedicated threads will be respon-
sible for the packet retirement.

Packet Bayj_’e‘dt_‘s_gheduler

ST

Mgt Port Kevboard

Port i Port

Figure 6. Packet Based Scheduling

3.4 Virtual Memory and Heap

For every system we had shipped so far, we did enable the
MMU so that we can have advanced MMU based protec-
tion. But we were not fully using some features of modern
OS VM subsystem.

Page on Demand and Copy on Write are two principles of
VM subsystem [9,14]. However, they are not favored for
telecom appliancs.

For a high throughput system, we cant afford to any non
deterministic delay that page fault exception may introduce.
The non-deterministic is not only about the MMU TLB,
Cache parts, but also, the delay from kernel queuing.

For our system design, we have been trying to avoid these
Page Fault issues at all. Our solutions are that, when sys-
tem booted up, we will pre-allocate all DRAM and had
the corresponding page table entries all ready. For exam-
ple, which part is packet memory, which part is local heap,
which is global heap were pre-allocated. All MMU entries
or hardware page tables were setup already before the sys-
tem jumped to process the first packet.

Regarding heap part, what we learned was that every task
should maintain its own heap space. Different tasks could
have different heap allocation algorithms. For telecom appli-
ances, memory allocation/free performance were very crit-
ical. We think that glibc malloc with ptmalloc2 could not

best provide our needs. For glibc, for small memory blocks
allocation, all threads will all go to the main arenas. Also,
even though different arenas are protected by locks, threads
are still sharing the heap space interleaving.

xxxxxx

Figure 7. glibc arena management

We learned this when tuning BGP and OSFP performance.
These routing tasks need lots of small memory blocks being
temporally used. Very frequent malloc and free with small
chunks, for example, 64Bytes,256 and 512 Bytes. If these
actions all happened in a global heap, BGP performance got
downgraded a lot.

The solution of ours was that we first gave BGP a big
chunk of memory space. With that space, BGP task built
its own heap and allocation mechanism. We had some mem-
ory cache mechanism being designed and implemented, so
that BGP task will not put small memory blocks back to
the heap and got merged. Instead, we will keep bunches of
small blocks of memory so that we can feed BGP task very
quickly. And we did find this memory usage improvement
helped us gain BGP performance a lot.

3.5 Cache Miss and Thrashing

For firewall system, an OS contains several millions of lines
code; it is a big runtime package.

We frequently struggled with performance challenges when
products were to be released. A particular product line had to
meet marketing performance metrics before went to market.
During the past decade, a big lesson that we had was that
10-20 percentage performance gain could be easily brought
back in the tuning stage, if kernel engineers applied cache
analysis and corresponding adjustments. Typical methods
were to arrange the code functions and data structures in
the elf sections. Sometimes, we found a buggy line of code
could even result in horrible cache misses.

Our findings were mainly as follows: When an appliance
started to process packet, either through or self traffics, the
system work-flow was generally composed of some fixed
amount of functions. And the calling sequences mostly fol-
lowed a pattern, for instance, some main data path functions
for through traffic; some main control path functions for
self traffic. Similar to data side, the data structures being
involved were some global packet buffer, management data
array and so on. We called these Systems Working Set.

For a system with our proprietary kernel, we tried to use gcc

section extension to group together the working set into the
same elf section. And then at linkage, we put those work-
ing sets (TEXT and DATA) onto some pre-allocated virtual
memory ranges. We did find we have a good performance
gain with usually 5-10 percentage; sometimes, up to 20 per-
centage.

Also, we carefully calculate the page coloring pattern based
on different CPUs, for example, PowerPC 7447s. And we
tried to move around those TEXTs or DATAs that we found
could have cache thrashing. We found it was very hard to
have a more than 30 percentage performance gain if only
with cache usage fine tuning. Usually, if a system was hav-
ing a very bad performance number, for instance, 50 per-
centage lower than expectation, the root cause was usually
from architecture design.

For Linux or other commercial OSs, we found that user
level applications could not directly access privileged cache
instructions was really not convenient for us when doing
high-end system design[17].

@)

[]
v

Figure 8. Cache Position under System View

For a high-end firewall system, usually, CPU side and ASIC
or NPU side need share some blocks of DRAM, for example,
session memory, some mgt control buffer. Some memory are
non-cachable; some are cacheable with either write-back or
write-through.

ASIC usually used DMA engine or some dedicated channel
to read/write data to DRAM while CPU fetching a data need
pass through cache and memory bus.

Lots of modern CPUs need an application to have privilege
mode in order to do cache update, or cache invalidate oper-
ations. While we can understand this is for protection pur-
poses, this limitation did introduce lots of inconveniences
for the interactions of ASIC side and CPU side.

User level cpu cache control is surely a very friendly mech-
anism that we think research area should consider[18]. For
our product design, we had been using our internal package
for this purpose, and extremely accelerated our product im-
plementation.

For advanced cache usage, including Write-Back, Write-
Through and Cache Prefetch, Cache lock, we extensively
tried use various combinations in our product design. And
our experiences are: We did not find significant performance
impact between write-back and write-through memory re-
gions in our high-end firewall products. For cache lock(both
instruction and data), we realized this could not contribute

any significant performance gain for the products we in-
volved before. For cache prefetch, it was a very interesting
scenario. We tried at least 5 products ranging from middle-
end to high-end products, and found it was very difficult to
know where to put the right prefetch instructions in order to
have the performance gain. We had one very successful try
for a middle rang product that was using previous IXP 23xx
chipset. Our conclusion was that cache pre-fetch could be a
big deal if the underlying memory bus was very slow, or the
data was moving from a place that need bridge over. That
was the case that we reaped the gain. For rest of products
that did not fit this category, we donnot think cache prefetch
matters.

3.6 Lock Usage

Spinlock and mutex are two locks that mostly got used for
many appliances. During our product design, we felt any of
commercial OS alone could not completely fit our need. We
once tried to combine both Linux and FreeBSD lock features
and provide the APIs to network engineers[19,20].

Some people had confusion about hardware lock engine and
memory based locks. For example, might be hardware locks
are better than memory based? Should we provide as much
as possible hard locks when doing a ASIC or NPU design?
We ever put lots of testing over this part. For example, tested
both hard locks provided by some chipsets and memory
based spinlock. We did not think there was much difference,
if not the same. And we eventually adopted memory based
spinlocks for system usage. One of big reasons was that we
could then provide lots of locks, and maintained a clean and
consistency code base and APIs. Introducing and maintain-
ing two different sets of lock mechanisms to engineers were
indeed a pain for future.

Meanwhile, we believe that the critical part for a lock usage
is the lock granularity, not the lock implementation itself
overhead. And thus avoiding a big lock is always welcome.
Lots of engineers did not pay enough attention on it, always
having an assumption in mind that the overall system perfor-
mance would not affect simply because their part of codes.
Many engineers did not understand when they should use
spinlock, when then should use mutex or rwlock and so on.
And we did also see lots of bugs related to this part. One
case was that one line buggy code led to a 2million USD
deal screwed up, and more than twenty people spent whole
weekend to find the root cause. And It was a Thanksgiving
holiday.

We indeed support nested locks. And we did not suffer some
bugs that people forgot to unlock the locks that they owned.
We implemented several features to detect the unpaired
locks so that the runtime software could issue a warning
or even crashed the box when in QA testing build.

3.7 Queues and Various Congestions

For modern operating system, we realized the stack was an
outstanding limit. And thats why lots of industry companies
have been using customized stack, or even wrote their own
to bypass the default stack.

With our experiences on this part, an important system issue
was that default stack was lack of the support for congestion
control.

For a firewall that supports routing mode, the cpu side usu-
ally need support BGP, OSPF and some dynamic routing
processes. Those routing instances are highly replying on
heartbeat messages to maintain neighbors. For example,
BGP will treat its neighbors being lost if not able to re-
ceive several heartbeat messages.

We suffered several urgent customer issues from some big
customers including a well-known service provider.

When a big amount of traffic was trying to pass the appli-
ance, we noticed that BGP task started to complain the lost
of heartbeat packets. However, when we remotely accessed
to our customer network and had some debugging, we did
find the heartbeat messages were already being sent to con-
trol CPU side.

Cosre> |

A
of

Self [ratfic
Through
—_—
@ —® Throuch
Met Port
Data Path

Figure 9. Control Plane Congestion/QoS

After dumped corresponding packet buffers and some painful
investigations, the BGP keep-alive messages were simply
congested within the queue to the CPU side. A typical
HOL(Head of Line) issue happened in the control path.
We realized that we should have always given these BGP
keep-alive messages highest priority with special queues, so
that the control path will always consume the special queue
first in order not to miss critical messages. A big lesson we
learned was: Multiple Queues are always better than single
queue[21].

After we redesigned the queue structures, we always had a
special queue from data path to control path, in which BGP
and other dynamic routing keep-alive packets would be put.
And this solved our customer issues very well.

The root cause of dynamic routing case also applied for
the stability of our HA subsystem. As we know, for an Ac-
tive/Passive or Active/Active HA environment, it would be
a disaster if people found HA Master/Slave thrashing.

For most of our high-end appliances, HA was one of impor-
tant features that customer wanted, especially for financial
and service provider customers.

We did experience several master/slave thrashing issues.
And the root causes were very similar. For HA system, mast
and slaves need to report each other its status periodically.
Whenever slaves thought the master was died, a new elec-
tion among slaves would happen. Therefore, when the criti-
cal keep-alive messages were delayed unexpectedly, a chaos
happened. Master and Slaves were keeping up and down.
From our fixes to all these above congestion issues, we felt
that HOL had contributed lots of critical system issues dur-
ing the past decade. Its strongly encouraged that system
architect should pay more attention on this part, particularly,
for the control traffic side, while data plane usually has some
high-arch queue engines available for QoS guarantee.

3.8 Manageability

No matter how good the performance number of an appli-
ance was, the device became useless if it could not be man-
aged by people. The manageability issues were not trivial at
all.

We summarized three outstanding manageability issues that
we think it is worthwhile to be explained in this section.
Usually for a telecom appliance, there is a task called CLI,
Command Task, or Console, which is used for people to use
a command line/keyboard to setup the config, display statis-
tics, push config, or any other management jobs. At most
time, this task is IDLE until people hit the keyboard to input
an CLL

CPU needed to split its time to the cmd task. What could
happen if the appliance was extremely busy processing pack-
ets at that time?

During our design, we had a long struggle with this issue. We
found it was very hard to make a good tradeoff so that CPU
can process console work and meantime the performance
of packet processing would not drop too much, especially,
when doing the firewall session ramp-up.

We did not know this issue until we had reports from field
engineers. Our customer complained that the console could
not response at all when heavy traffic was passing through.
Ironically enough, a character just being hit even would not
show up at all after 10 seconds. The root cause was straight-
forward: Console task could not get enough CPU time while
timer-interrupt based packet processing had been using too
much CPU circles.

To alleviate this issue, we first tried to cut the amount of
packets to be processed every round. And it was apparently,
it was very difficult to choose a right number. One of big
reasons was that we could not afford to lose performance
too much. Keeping a good ramp up rate and concurrent ses-
sion numbers was very important for enterprise and service
provider network.

Give that the granularity of cutting total amounts of packets
to be processed was too coarse, we tried to cut traffic based
on port, along with based on traffic type.

Issues got alleviated, but not fixed. We had been suffering

this pain and customer issues for years, and finally, we de-
signed a set of CLIs so that our customers could adjust the
number and the ways of cutting traffic by themselves.

The situation got better or fixed until we started to work on
our first multi-CPU and then later on multi-core based sys-
tems. We think having separated computing resources was
the reason that this issue was gone.

v

Packets

CPU Usage: 100%

Figure 10. Died System when under flooding

We experienced similar situations when trying to push rout-
ing configuration and security policies to data plane from
control plane. Once a time, we found that our system spent
more than 10 minutes to get it done for installing half mil-
lion routes. This situation could not get accepted by our
customers.

Overall we think the lack of Control Plane QoS was the
root cause for various congestion and manage-ability issues.
Most of work has been done for data plane performance.
However, we argue that control plane performance is critical
as well [22].

3.9 Micro-Kernel and Performance Issue

Micro-kernel vesus monolithic kernel has been a debate for
long time. A typical arguing point was that micro-kernel
may hurt application performance too much. The good parts
are that micro-kernel does provide better architecture and
protection model by using message passing.

We had one chassis based high-end products with several
IDS service cards. For the IDS module, we ported our codes
on top of the QNX neutrino micro-kernel[24].

Our experiences were that the porting efforts were pretty
straight forward because the legacy codes were mostly glibc
style. We were able to get porting done within one-three
months and had packets passed through. It would be very
difficult for us to re-write our mostly share memory based
legacy codes to the message passing based one. We picked
the hybrid model and used mmap to keep legacy seman-
tics. Our conclusion was that system architect should make
a good tradeoff when handling micro-kernel architecture,
when trying to handle millions of lines legacy codes. Our
best practice was: Take advantage of micro-kernels advan-
tages but avoid those native messaging services.

For performance concern, we spent lots of efforts to do the
tuning. And we did not see big performance drop that we

were scary about at the beginning. 5 percentage around per-
formance drop was totally acceptable in the industry when
doing a product refreshing.

Overall, we did not recommend our community use micro-
kernel technology if you had been using monolithic kernel
for product line and had accumulated many legacy codes.
We think that monolithic OS has been evolving and con-
verging with micr-kernel or virtualization stuff these years.
Thus the gaps between monolithic and micro-kernel are not
significant any more.

As a system architect, you need to plan your produce line fu-
tures evolvement. Since most of chipset vendors always have
limited resources to provide software SDK support for their
silicons, they usually only focused on Linux part. Given this
kind of situation, the selection of OS should be considered
not only systematically as well as realistically.

3.10 Multicore Usage Pattern

We have been using commercial multicores for our product
design and implementation and also involved in a multicore
chip design for years.[25,26]

Below are some our experiences or lessons.

For the product that we designed before, we adopted a hy-
brid system model, instead of a pure pipeline, or a parallel
model. And for risk control and simplicity reasons, we stat-
ically divided all available cores, hardware threads for ded-
icated usage. While we did know this might not be the best
choice, we felt this was the most realistic approach.

MultiCore (N=1+j+k)

i cores] cores k cores
= Egress |
'y

I Ingress
» Iy

Y h 4 h 4

Flow :‘k' - SHivI-Based Packet Descriptors--f--

Figure 11. Multicore Usage

For the design and implementation that we had done, we ex-
plicitly split the N cores with i, j and k cores. The first i cores
were solely used for ingress packet processing; the middle
j cores were responsible for security/routing handling. Usu-
ally, the j cores were out of order engines, dedicated to pick
up available packets ; The last k cores were used for doing
the final checks and some sequences arrangements before
sending packets out to egress ports.

We found our design pattern was able to satisfy most of our
needs while keeping a system simple enough. Surely, The
limitation of our design was the static partition of i, j and k
cores. We did find this limit hurts our next generation system

when doing the upgrades.

The best core allocation schema would be that the system
can dynamically adjust the size of i, j and k, based on some
dynamic performance factors .

We had been carefully watching the cache and memory bus
issue. We did have a chance to collect some statistic data and
realized that some HWT were competing the memory bus
extensively when trying to obtain a shared spinlock (mem-
ory based). And the distribution of having the lock among
the related HWTs was not strictly even indeed. After we
compared the data and our conclusion was that we did not
get a hit a scared starving issue yet and thus did not investi-
gate this issue further.

We also participated in a multicore NPU design for several
years. The chip was to be used internally for high-end fire-
wall products.

We found that the co-design philosophy was very impor-
tant for a silicon to be a successful tapout. Otherwise, huge
of efforts including money could be easily wasted. Silicon
engineers usually were lack of knowledge why some log-
ics of a chip should be added, and how some parts were a
must-have feature, while some were not. Ironically, software
engineers would always like to ask chip designers one ques-
tion: Could we have a big L2/L.3 cache?

Usually, for a NPU silicon, the die is composed of two big
parts: Core side and Engine side. And a system intercon-
nect is used for connecting everything together. From our
experiences previously, the system interconnect and cache
coherence protocol stability were the two most critical parts.

4. Discussion

We have been working on real-time telecom appliance de-
sign for the past 20 years. We feel that Integration Com-
plexity has been becoming one of the most difficult system
design issues we face.

Any standalone sub-system of an core router, edge router,
carrier switch, or a high-end firewall is not that difficult to
design. But the systems became complex when we started to
glue these pieces together. We encourage system researchers
to consider the qualitative and quantitative aspect of systems
design as part of their research.

We think it is very important for Service Chain integration
when all major service providers move towards NFV (Net-
work Function Virtualization). We expect the problems from
multi-vendors integration will become very complex for sys-
tem designers in the next decades.

Acknowledgments

We would like to thank Dr. Xianan Tang, Dr. Nick Zhang
and Steve Karkula for their helpful reviews on drafts of this

paper.

References

[1] http://en.wikipedia.org/wiki/System

[2] http://en.wikipedia.org/wiki/Operating_system

[3] http://en.wikipedia.org/wiki/Cisco_10S

[4] http://en.wikipedia.org/wiki/Junos

[5] http://juniper.net/techpubs/software/screenos

[6] http://www.hillstonenet.com/

[7] http://en.wikipedia.org/wiki/Routing_control_plane
[8] http://tools.ietf.org/html/rfc4945

[9] Maurice J. Bach, The Design of the UNIX Operating System,
Prentice-Hall, 1986

[10] http://en.wikipedia.org/wiki/Thread-local_storage

[11] Volker Seeker, Process Scheduling in Linux, University of
Edinburgh, May 12, 2013.

[12] M. Tim Jones, Inside the Linux scheduler, IBM developer
Works Technical Library, June 30, 2006

[13] Daniel P. Bovet & Marco Cesati, Understanding the Linux
Kernel, October 2000

[14] http://en.wikipedia.org/wiki/Demand_paging
[15] http://en.wikipedia.org/wiki/Copy-on-write

[16] Justin Ferguson, Understanding the heap by breaking it -
Black Hat

[17] Harvey G. Cragon, Computer Architecture and Implementa-
tion, Cambridge University Press, 2000

[18] Xiaoning Ding et al.,, ULCC: A User-Level Facility for
Optimizing Shared Cache Performance on Multicores

[19] Silas Boyd-Wickizer, et al., An Analysis of Linux Scalability
to Many Cores

[20] Marshall Kirk McKusick , An Overview of Locking in the
FreeBSD Kernel

[21] http://en.wikipedia.org/wiki/Head-of-line_blocking

[22] Intel Corp, Intel Data Plane Development Kit (Intel DPDK)
[23] http://www.cs.vu.nl/ ast/reliable-os/

[24] QNX, QNX Neutrino System Architecture

[25] http://en.wikipedia.org/wiki/Multi-core_processor

[26] http://www.cavium.com/OCTEON_MIPS64.html

