
A Formal Understanding about APT Infection

Abstract—Nowadays APT (Advanced Persistent Threat)
breaches are becoming inevitable, because determined threat ac-
tors will always find an insidious way through the gap. Perimeter
protection can do little once a foothold has been established by
an APT. Modern systems are essentially black boxes and provide
very limited visibility of their internal data relationships. Thus,
it is very difficult to understand and investigate the infection
and spread of an APT. As opposed to attack-centric approaches,
this paper focuses on data relations and proposes some formal
methods for considering the spatial and causal graphs of infected
data by an APT attack. They are called Infection Spread (IS) and
Infection Graph (IG). Our approaches can well describe the data
dependencies of cyber system components and help people have a
qualitative and quantitative understanding of how an APT might
walk laterally. It can also provide great values for post-breach
assessment once an APT is identified.

I. ADVANCED PERSISTENT THREAT

Everyone now realizes what security professionals have long
been aware of: there is no such thing as perfect security. Se-
curity breaches are becoming inevitable, because determined
threat actors will always find an insidious way through the
gap.
The traditional dangers that security teams have been facing
for years are being replaced by a far more hazardous form
of attack: the Advanced Persistent Threat (APT). An APT
is a network attack in which an unauthorized person gains
access to a network and stays there undetected for long
time. APT attacks target organizations in sectors with high-
value information, such as national defense, and the financial
industry. The intention of an APT attack is to steal data rather
than to cause damage to the organization [1,2,3,4,5,6].
As illustrated in figure 1, nearly every APT follows four
phases: Reconnaissance, Initial Entry, Escalation of Con-
tinuous Privileges, and Exploitation [7]. An investigation

Figure 1. Cyber Kill Chain

into the organization’s weaknesses, which often includes do-
main queries and port and vulnerability scans. Discovered
exposures are exploited and a foothold in the target network
is established using sophisticated technical methods or social
engineering techniques. Following initial penetration, hackers
walk laterally to acquire more rights and gain control over
additional systems and install back doors for future access.
Once a control has been established, the APT will be able to
continuously infect, compromise and exploit more data.

From defense perspective, a defender system need well under-
stand how the APT will continually spread and walk laterally
before it reaches the target data; and then IT team can adopt
corresponding deployment and protection strategies to stop the
APT infection. To achieve this goal, the defender need a good
understanding of their data relations.
As of today, modern enterprise IT systems are essentially black
boxes and provide very limited visibility of their internal data
relations. This greatly limits the potential to understand APTs
in depth. A general lack of understanding of complex systems
interferes with efforts to diagnose advanced attacks that span
multiple applications and systems. Very few of research work
has been done to address this concern [29].

II. BREACH VISIBILITY & CURRENT PROBLEMS

In late November to early December 2013, Target Corpora-
tion announced that around 40 million credit and debit cards
data was stolen. It is the second largest credit and debit card
breach after the TJX Companies data breach where almost 46
million cards were affected.The cost of the data breach could
be up to total $1B dollars [8].
The Community Health Systems(CHS) breach exposing 4.5
million patients’ data in 29 states on August, 2014 is ex-
pected to be costly–the total bill could be somewhere between
$75 million and $150 million, according to a calculation at
Forbes[8].
In February 2015, Anthem suffered a data breach of nearly
80 million medical records. The company’s cyber insurance
policy is likely to be exhausted. The financial consequences
could reach beyond the $100 million mark [8].
The Heartbleed bug is considered to be one of the most
catastrophic vulnerabilities because it enabled anyone to read
the memory of systems protected by vulnerable versions of
OpenSSL. At Heartbleed disclosure on April 7, 2014, around
17% or half a million of the Internet’s secure web servers
certified by trusted authorities were believed to have been
vulnerable to the attack. When this vulnerability was reported,
some organizations were thinking that no confidential data was
able to be read out of their servers [9,10,11,12].
From 2014 Threat Report that Mandiant Inc published, “The
median number of days attackers were present on a victim
network before they were discovered was 229 days” and “33%
of the organizations had discovered the intrusion themselves.”
[13]
These days, the community’s been asking below two ques-
tions:

• Is there a formal study to help IT understand the infec-
tion and spread of an APT after an initial entry being
exploited?

• Is there a good methodology to guide an organization
how to distribute its data to avoid data breaches?

We think that the lack of understanding the data relations
within a complex system contributes the most outstanding
reason for not able to answering the above questions.
As of today, most of industry organizations have been highly
relying on experienced security professionals, or spend lots of
money to hire professional services from third parties, e.g.,
FireEye Inc. This is apparently not sufficient neither efficient
to address all the security concerns.
On the other hand, in academic area, most of research works
have been attack-centric only, focusing on malware or viruses
scripts or binary detection; very few of studies are related to
data relation analysis [26, 27].
Investigating security vulnerabilities, and the possible damage
inflicted on a system, tends to be a very complicated process.
Therefore, it is strongly encouraged for having a good formal
approach that provide a succinct way to understand the data
relations.
In this paper, we address the above issues from data relation
perspective. In section 3 and 4, we first introduce and discuss
the spatial and causal relations for an enterprise’s data. Then
we propose some formal methods called Infection Spread(IS)
and Infection Graph (IG), which can be used to depict the
infection path of an APT. We think the data-centric approach
could greatly help people understand the data dependencies for
infected data, and it can well support root cause analysis and
post-breach assessment once an adversary activity is identified.
In section 5, as a case study, we use the IS and IG methods
to formally describe the Heartbleed-based APTs behavior
particularly for CHS data breach case, and then we give a
qualitative and quantitative analysis and discussion.
In section 6 and 7, we compare our work with those attack-
centric research studies that have been done for decades, and
give some discussions about how to use our methods to help
an enterprise do the data separation so as to avoid single point
of breach (SPOB).

III. DATA RELATION AND DATA SPACE

A. Data Relations

A formal understanding of data relations of a system is
important to address APT spreading problems after initial en-
try. In this section, we first introduce two important concepts,
which are Spatial Relation and Causal Relation. We think
that any data in an organization holds both spatial and causal
attributes.
Definition: Data
Data being discussed herein in this paper is but not limited
to, cache lines in CPU or multi-cores, user credentials or keys
for VPN services, a process’s bss, stack or heap, an OS kernel
data, meta-data for a cluster, an VM, an orchestration platform
for a cloud, or a disk-array file sytem, or a whole cloud SAN
storage.
Definition: Spatial Relation (SR)
Two data holds a spatial relationship if they are managed by

the exactly same security policies. Depending on whether the
data are persistently close to each other, e.g., database table
entries, or just happen to be located together temporally, e.g.,
cache lines, we call them Persistent SR (PSR) and Temporal
SR(TSR) correspondingly. Spatial relation means that having
access to one data will have the capability to access its all
spatial related data.
We define aSRb if a and b has a spatial relation. aSRb is
symmetric. If aSRb, then bSRa. For example, different cache
lines in CPU caches, threads data, bss sections, or heap data
in the same process holds TSR, while different tables inside
one database or different files in one hard disk, are holding an
PSR.
Definition: Causal Relation (CR)
Two data holds a causal relationship if having access to one
data will lead to obtaining the access privileges to another data.
For example, user/password data has the CR relation with a
users data; kernel space and application space has the CR
relation, and SQL roots info has the CR with the data inside
the database. We define aCRb if a and b has a causal relation.
Apparently, Causal relation is NOT symmetric. aCRb does not
mean bCRa. For instance, a meta-data usually is causal related
to the data that it manages. But the otherwise is not true.
Definition: Concurrent Relation(CN)
Two data are concurrent if they are neither spatial related nor
causal related during their lifecycles. We define aCNb if a
and b has a concurrent relation.

B. Data Space
Based on the data relations for a set of data, we can define

the Data Space to represent the whole data of an organization.
As illustrated in figure 2, a data space consists of a set of

Figure 2. Data Space

spatial spaces. Each spatial space consists of a set of data. We
define the relations between two spatial spaces as follows:
Related Data Spaces: Two spatial spaces A and B are related
if there at least exist one data a in space A ; and a has at least
one causal relation with one data in space B. We can formally
define it as:

∃a ∈ A, and ∃b ∈ B,

We have:
aCRb, or bCRa

Unrelated Data Spaces: Two spatial spaces A and B are
unrelated if there does NOT have any data in space A and B
that holds a causal relation. In other words,

6 ∃a ∈ A, or 6 ∃b ∈ B,

We have:
aCRb, or bCRa

For data in a spatial space, it can hold a causal relation with
another data either in the same or in a different spatial space.
Any data in a data space has two attributes/tags:
spatial attribute and causal attributes.
Spatial Attribute represents which spatial space that one data
is located at. One data at least belongs to one spatial domain.
It can cross multiple spatial spaces. For instance, a distributed
database.
Data in the same spatial relation shares the same secu-
rity domain, et al., the same VLAN, file system, Windows
Group/Domain, or firewall policies.
Causal Attribute is the information about that one data has
a causal relation with other data. And these related data could
be in the same or different spatial domain.
In the following sections, we will use the spatial and causal
relations to formally describe the spread of an APT.

IV. INFECTION SPREAD AND INFECTION GRAPH

A. Malicious Operations

We argue that an action of malicious operations is either a
read or a write action on data, which could be the stack or
heap of a thread/process, root/password info of a kernel or a
vm, or a database. Malware usually is stealthy, intended to
steal one of the above data or spy on computer users for an
extended period without their knowledge.
For malicious operations, we define the following notations:
Malicious Read (MR): Any READ behavior that aims to steal
data out of an organization.
Malicious Write(MW): Any WRITE behavior that could do
harm on the data set including taking a system component
down, or setting up a foothold for maintaining presence.
Formally, we define MO(Malicious Operations) as:

MO = {MR,MW}

Definition: We define m ⊗ d as a binary relation between
an MO and an DATA, such that m is able to execute an MR
or/and MW operations on d. We call it m infect d, or ”d is
infected by m.
Malicious Spanning: A malicious operation has a capability
called ”Malicious Spanning”. And the spanning domain is its
currently located spatial space. For example, if a malicious
read is able to breach the heap of a process, it can meantime
read other parts of the heap data; if a database is breached,
all the tables are able to be read with a brutal force based
scanning.

B. Infection Spread

Definition: We define ”a→ b” as a binary relation between
two data, such that if one data is infected, another data could
also be infected. We call this relation Infection Spread (IS).
For infection spread, there exist Spatial Infection Spread
and Causal Infection Spread.

Theorem 1. If aSRb, a→b spatially if a is infected.

Proof. If a and b holds a SR relation; and a is infected by a
malicious operation m,where m ∈MO, and m⊗a; because a
and b are adjacent to each other and share the same security
policies, then m will be able to also read/write b, thus m⊗b.
b is infected.

Similarly, we can derive that, if one data in a spatial space
is infected, the whole space is infected. An infection is able
to span over to the whole spatial domain.

Theorem 2. If aCRb, a→ b causally if a is infected.

Proof. Suppose a is a privileged meta-data, and a and b holds
a CR relation. If a is infected with a malicious operation
m, where m ∈ MO, and m ⊗ a, then with the privileged
information derived from a, ∃n ∈ MO, n ⊗ b. Then b is
breached. For example, a malware can use VPN to attack
data b after having obtained private key data from a; APTs
usually use the causal infection to install new backdoors which
is different than the ones installed initially and maintain the
continued presence.

Moreover, we argue that infection relationship → holds
reflexive, transitive and conditional symmetric properties.

∀a, a→ a(reflexivity)
∀a, b, c, ifa→ b, and b→ c, then a→ c(transitivity);
∀a, b, ifa→ b, and aSRb, then b→ a.

In other words, spatial infection spread is symmetric.
However, causal infection spread is not.

For the data in a data center, we have the following
corollaries.
Corollary 1: If a and b are thread data on the same process,
a→ b spatially if a is infected.
Corollary 2: A whole process data could be infected if a
particular thread data is infected.
Corollary 3: If a is a kernel data and b is a process data on
top of the kernel, a→ bcausally if a is infected.
Corollary 4: A whole virtual machine data could be infected
if a kernel is infected.
Corollary 5: If a is an orchestration data and b is a vm data,
a→ b causally if a is infected.
Corollary 6: A whole cloud data could be infected if the
orchestration management is infected.

C. Infection Graph

Infection Graph is defined as an ordered pair
IG = (DATA, IS),

• Data: a data set which contains data of thread, process,
kernel, VM, or a whole cloud data.

• IS: a set of ordered pairs of data; and each of which
represents an Infection Spread Path, e.g., a→ b

We consider the following attributes for an infection graph.
1) Infection Order of an IG is |DATA| (the total number

of being infected data).
2) Infection Size is |IS|, the amount of infection paths.
3) Infection Degree of data a is the number of edges that

connect to it.
4) Infection Distance: Given a data path from a to b,

an infection distance is defined by the middle stages
between a and b. Each stage represents an independent
breach.

5) Infection Probability: Assume an infection distance
is n from data a to b. It means that an APT, after
successfully built a foothold at the data a position, it
still need walk through n steps in order to reach the
target data b. If for every step, the probability of being
breached is pi(i = 1, 2, 3, . . . , n), we can simply have
the Infection Probability being defined as follows:

Theorem 3. The probability that an APT can
successfully breach a target data is:

IP (a, b) = p1 × p2 × p3 . . .× pn

=

n∏
i=1

pi

where
a: the foothold position that an APT established through
initial entry.
b: the target data.
n: the infection distance.
pi: the infection probability of ith step.

Figure 3. Infection Distance

Discussion:
The above five properties of an infection graph are important
for measuring an APT qualitatively and quantitatively. For
instance, how persistent and how hard an APT would be.
Infection Degree is a good meter for measuring how redundant
an APT is. For example, an APT may use multiple zero-day
vulnerabilities to breach a system, instead of only one. an APT

breach path still exists even if one path get removed.
The Infection Distance and the Infection Probability can be
well used to evaluate the ”difficulty” of an APT, and provide
a good guidance for an IT to deploy data to avoid the intrusion
of APTs.

1) When more n steps are needed to reach b from a; the
overall IP (a, b) probability is smaller; and thus it is
becoming more difficult for this APT to breach the data
b.

2) If for each intermediate step, the smaller of pi, probabil-
ity is, the the overall probability IP (a, b) is proportional
smaller correspondingly; an APT is becoming harder to
breach the target data.

For simplicity purpose, in this paper, we use (1/e) to
express the infection probability for each step, thus the whole
infection possibility from a to b is (1/en). Then, we can
draw a diagram to illustrate the probability distributions of
an IP in figure 4.

We can tell, after an infection distance is longer than 3,

Figure 4. Infection Probability

the probability of the system being breached is shrinking
exponentially. and when the distance is 5, the probability is
becoming nearly trivial close to zero. This insightful findings
could be well used for how to design a defense system. For
example, increase the defense chains, so as to make the APT
gives up its breach attempts.
With the notations of infection distance and infection
possibility, we can define the hardness of a data breach as
below.
Definition: Easy Data Breach
An APT attack is an easy data breach if the infection distance
between the initial entry and the target data is less than 3.
Definition: Hard Data Breach
An APT attack is a hard data breach if the infection distance
between the initial entry and the target data is more than 3.
As we know, deploying an APT itself is a very expensive
behavior; and has to be very economic effective. An individual
or/and a nation sponsored actor need to design an APT very

sophisticated in order to achieve the attack goal. In other
words, An APT defender can either/both increase the n
or/and decrease the p in our theorem 3 to enforce an APT’s
behavior fall through the Hard Breach zone in our figure 4.

Next, we will start to define some basic building blocks of
infection graphs. We find that any advanced APT spread can
be depicted by the composition of these basic patterns.
Initial Infection:
Figure 5 shows an Infection Graph IG = ({a}, {NULL}),

Figure 5. Initial Infection

where a is infected by an vulnerability m, m ⊗ a. This is
the simplest infection graph. Usually, an initial infection is
mapped to an APT initial entry during its cyber kill chain.
Spatial Infection:

Figure 6 is a spatial infection evolved from the initial

Figure 6. Spatial Infection

infection. For example, an APT walked latterly. After data a
is infected by m, data b is infected by the same m operation.
IG = ({a, b}, {(a → b)}), where m ⊗ a, andm ⊗ b. An
spatial infection usually is the result of an APT spanning
behavior.
Causal Infection:
Figure 7 is a causal infection graph. data a is first infected

Figure 7. Causal Infection

by m, and then m is able to extract the access privilege
information of b from a. After that, the APT is able
to pick a corresponding malicious operation to attack b.
IG = ({a, b}, (a→ b)), where m ⊗ a, andn ⊗ b. a and
b holds a causal infection relationship. In most cases, a
causal infection of being managed data could happen after a
meta-data is breached.

With the above three basic building blocks, we conclude that
we can draw some more complicated APT spread patterns.
Single Route Infection:
Suppose there existed an APT attack and it first set
up a foothold at data a, and then walked through
neighbor data b and c. And c is the target data. We
formally depict this APT behavior as figure 8 and formal
description as: IG = ({a, b, c}, {(a → b), (b → c)}, where
m ⊗ a,m ⊗ b, andn ⊗ c. For the spread, (a, a), (a, b) are
spatial infections, while (b, c) is a causal infection.

Figure 8. Single Route Infection

Hop Point Infection:
Modern APTs, especially, those supported by national
governments, have been using hop points architecture to
attack its target. A Hop Point sits in the middle between
CC(Command Control) server and the target data so as to
improve the APT persistence. Hop points are most frequently
compromised systems that APT uses as camouflage for
attackers [12, 13]. For figure 9, the APT behavior is that it
first set up a foothold at one node, and uses that node as
an CC, and then use two different zero-day vulnerabilities
to compromise two hop points. These two hop points then
separately breach the target data. And the confidential data
will be stolen back to CC via either path. Formally, in the

Figure 9. Hop Point Infection

figure 9, c and d are middle points, playing as hop points,
while a is the initial exploit node, b is the APT target.
IG = ({a, b, c, d}, {(a→ c), (a→ d), (c→ b), (d→ b)}),
where
m⊗ a, o⊗ c, n⊗ d, ó⊗b and ń⊗b
Compared to the single route pattern, hop point infection
topology is more redundant and persistent. b is infected by
two different vulnerabilities, and thus still under compromise
if either one is found and get removed. Also, Hop Points
infection size is double than single route, and thus can have
multiple routes to reach target b(infection degree is 2), having
redundant capabilities.

V. EVALUATION:HEARTBLEED EXPLOITATION AND
INFECTION

The root cause for CHS data breach was Heartbleed. A test
server was hacked in April, 2014 by using the Heartbleed as
initial entry; and then the attacker gradually walked through
CHS intranet and took millions of medical data out [14,15].
In this section we use the infection graph methodology to
formally describe the data breach that CHS experienced in
last April. The APT used Heartbleed vulnerability as the initial
entry [14,15]
The panic about Heartbleed from security experts is mainly
because this bug left no traces of anything abnormal happening
to the logs. And thus had no way of knowing who had
exploited the flaw and what data had been stolen after the
initial exploitation. Figure 10 is the final infection graph we

Figure 10. HeartBleed Infection Graph

created. The data set being involved in this case include:
1) a: heartbeat message
2) b: payload
3) c: user/password credentials
4) e: vpn data
5) f: ssh data
6) m: malicious function of

dtls1 process heartbeat(SSL *s)
7) o: malicious operation for ssh login
8) n: malicious operation for vpn

Stage 1: Initial Compromise
At the beginning, we have m⊗ a as the Initial Compromise.
And the hearbeat message will keep trying steal data [9]. The
initial infection graph is: Heartbleed = (a,NULL), where
a is infected by m of dtls1 process heartbeat; a is the heap
data of https process openssl.
Stage 2: Scanning/Spear Phishing
Hackers successfully established a foothold after obtaining
the private key. From figure 10, we can realize that, since
a, b, c, d are set of data within the same process. From Lemma
1, we have a→ b; a→ c; a→ d . And all the infections hold
the spatial attributes.
Stage 3: Establish Footholds
After the private key or some other credential data were
breached, hackers were able to establish footholds and moved
to another lifecycle of the infection. For CHSs breach graph,
a new data node e: VPN Service is added into the graph, and

a malicious operation n is correspondingly defined as using
the private key extracted from b to login to VPN.
Meantime, APTs usually are not satisfied establishing only
one foothold. They will try to make multiple ones whenever
there is a chance. Hackers also fetched the compromised ssh
user/password information. And then they are able to breach
into ssh, further develop the APTs presence. Therefore, we
add one new data node f : SSH service/data onto the infection
graph, and the malicious operation o, which is identified as
using user/password info extracted from c to remote SSH.
Stage 4: Walk laterally and Maintain Presence
Generally speaking, systems that the hackers initially
compromised do not contain the data that they want [13]. For
CHS medical record breach, the first node being breached
was a testing server. The APT moved laterally within CHS
network to other servers that either contain the target data or
allow them to access it.
Suppose that, with one more step, the APT actor obtained
the reading permissions of the CHS internal SQL database
and was able to read all the medical data with standard
queries.We assume the APT actor used both VPN and SSH
footholds to walk through the internal networks and obtained
3 users credentials that have the right access privileges to
target database.
Stage 5: Reach Target
The goal of an APT is to gradually reach the target data
and steal it. The data usually includes intellectual property,
business contracts, policy papers or military reports. Once
APT actor find targetted data on compromised systems, the
data will be packed and be sent out of the organization via a
foothold, which was established previously. For Heartbleed
example here, after the actor compromised p, q and r, they
are able to reach the target data via an operation of SQL
query. and the data will be sent back to one of the foothold
f or e, and then sent back to the remote C&C server, which
was controlled by the APT actor. We can obtain the final
stage formal graph as below:
Heartbleed = ({a, b, c, d, e, f, p, q, r, target},
{(a→ b), (a→ c), (a→ d), (b→ e), (c→ f)
(f → p), (f → q), (f → r), (e→ p), (e→ q),
(e→ r), (p→ target), (q → target), (r → target)}).

Discussion:
For the Infection Graph above that is derived from the intial
Heartbleed attack, we can measure some of its important
attributes as follows:

1) Infection Order: 10
2) Infection Degree : 3
3) Infection Size: 14
4) Infection Distance: 3

We conclude that the infection cost of Heartbleed is not
as expensive as people thought. An attacker could easily
use Heartbleed as an initial vulnerability and then breach a
target data within 5 steps, which is an easy breach from our
definition.

During the period that the APT tried to walk toward the target,
10 set of data were breached. Please note that, after a foothold
was established, APTs usually walked very purposely and tried
to be as close as possible to the target. For that purposes,
APTs mostly tried use causal relations to gain more privileges
or setup new footholds, rather than use spatial relation for
infection at the beginning. We argue that a 5 stage APT attack
usually is very difficult for maintaining its presence unless the
C&C server is only 3 steps far. Generally, we believe that an
3 stage APT attack is the best tactic.

VI. RELATED WORK

In the past decade has been done lots of research work
to address various security issues. But very few of them is
related to study the infection of an APT, which is still new
to the community. Since APT actors are usually sponsored
by financial sectors or even foreign national states, they are
usually very sophisticated and advanced [2,3,4,5,6,13].
Most of research works on malware analysis and detection
are either signature based, or behavior based [14-25]. While
many progresses have been made, either of these approaches
is facing big challenges. For instance, in order to simulate
a complicated malware, it could take 5 minutes for us to
evaluate its malicious behaviors; some viruses are encrypted
and thus are very difficult for binary detector to decide and
analysis whether it is bad or not.
Philips and Swiler [26] proposed the concept of attack graphs
that tries to help IT professionals create an graph based on a
set of known attack actions. And the analysis system explicitly
required as input a database of common attacks, broken into
atomic steps, specific network configuration and topology
information, and an attacker profile. The attack information
is matched with the network configuration information and
an attacker profile in order to create an attack graph.
Sheyner, Haines, Jha and Wing have done many research
on how to use model checking theory and technologies to
automatically create the attack graphs based on a set of
attack arsenals [26, 27, 28]. While Wing’s approach is more
general compared to the one that Philips and Swiler had
proposed, all of their works shared some common limitations:
Their approaches took an ”attack-centric” view of the system
[27]. And all their approaches need a set of pre-defined
attack profiles/asenals in order to create a very large and
complicated attack graphs. However, for modern APT attacks,
it is almost impossible for security professionals to know
which zero-day vulnerability that an intruder would use, or
which vulnerability an IT system has.
Overall, most of related research paid little attention on the
data relations, which is our research focus. We think that a
general lack of understanding of complex data relations does
interferes with efforts to understand advanced attacks that
span multiple applications and systems.

VII. CONTRIBUTIONS AND DISCUSSION

Our most contribution in this paper is that we formally
define the data relations in an organization from a security
perspective, and conclude that the spatial and causal relations
among data contribute most for an APT’s infection and spread.
With the initial, spatial and causal three basic building blocks
that we proposed, any complicated APT spread behaviors
can be formally studied and composed for a qualitative and
quantitative analysis.
We think that our formal studies can be well used for describ-
ing the data dependencies of cyber system components and
provide a good visibility of internal data relations and then be
able to better understand how an APT might walk laterally.
Our methodology can also provide a good guidance to security
teams for how to store and distribute business senstive data in
an organization to avoid Single Point of Breach.
Rule 1: Avoid storing data in one single spatial space.
Given that whenever an initial node gets exploited then the
whole spatial space could be spanned and breached, a good
alleviation is to split data onto different spatial zones so as to
avoid SPOB. The purpose is to limit the spanning capability
of an APT. The infection distance and cost for the APT will
go much higher if an APT wants to walk cross different spatial
domains to get a full set of the target data. For example, when
crossing different VLANs, firewall/IDS checks are usually
applied.
Rule 2: Split meta-data to multiple spatial domains.
Meta-data is data of data. Losing meta-data usually means that
the data being managed by the meta-data is under high risk. We
should avoid storing important meta-data in one single spatial
domain so as to avoid single point of breach. For instance,
we should not store the user/password data together with its
database in the same layer-2 domain, or same unix server. It
is strongly encouraged that two data with a causal relation
should be split at different spatial domains.
Rule 3: Strong authentication and authorization when a
data flow is to cross different spatial spaces.
Modern systems are opaque and thus hard to monitor and
control. Thats why DARPAs Transparent Computing (TC)
program is looking for research efforts to provide high- fidelity
visibility into data component interactions during system. The
spatial and causal relations among data could provide a good
basis so that a defender system can add strong authentication
and authorization when a data flow is trying to cross over a
spatial space.
Our future work is to design and implement a prototype APT
detector based on our infection graphs; Also, we are interested
in the infection network topology issues. We think that APTs
maintaining presence and walk laterally are very interesting
topics. We plan to use Clos network to measure how an
APT attack can survive and maintain presence in dynamically
changing systems.

REFERENCES

[1] http://en.wikipedia.org/wiki/Advanced Persistent Threat
[2] Mandiant Corp, APT1: Exposing One of China’s Cyber Espionage Units

[3] http://en.wikipedia.org/wiki/Network security
[4] McAfee, Combating Advanced Persistent Threats.
[5] Trend Micro, Detecting APT Activity with NetworkTraffic Analysis
[6] Dell , Lifecycle of an Advanced Persistent Threat
[7] Eric M. Hutchins, et. al., Intelligence-Driven Computer Network Defense

Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains
(2010), Lockheed Martin Corporation.

[8] http://en.wikipedia.org/wiki/Data breach
[9] http://en.wikipedia.org/wiki/Heartbleed
[10] http://heartbleed.com/
[11] http://en.wikipedia.org/wiki/OpenSSL
[12] http://www.nationalcybersecurityinstitute.org/lessons- from-anthem-

attack/
[13] 2014 Threat Report: Thrends Beyond the Breach, Mandiant Inc.
[14] What Healthcare Can Learn From CHS Data Breach,

www.informationweek.com/healthcare/security-and-privacy/what-
healthcare-can-learn-from-chs-data-breach/

[15] https://www.trustedsec.com/august-2014/chs- hackedheartbleed-
exclusive-trustedsec/

[16] Jim Aldridge, Targeted Intrusion Remediation: Lessons From The Front
Lines, BlackHat, 2012

[17] BAECHER, P., KOETTER, M., HOLZ, T., DORNSEIF, M., AND
FREILING, F. The Nepenthes Platform: An Efficient Approach To Collect
Malware. In Recent Advances in Intrusion Detection (RAID) (2006).

[18] BAILEY, M., OBERHEIDE, J., ANDERSEN, J., MAO, Z., JAHANIAN,
F., AND NAZARIO, J. Automated Classification and Analysis of Internet
Malware. In Symposium on Recent Advances in Intrusion Detection
(RAID) (2007).

[19] BAYER, U., KRUEGEL, C., AND KIRDA, E. TTAnalyze: A Tool for
Analyzing Malware. In Annual Conference of the European Institute for
Computer Antivirus Research (EICAR) (2006).

[20] BRUSCHI, D., MARTIGNONI, L., AND MONGA, M. Detecting Self-
Mutating Malware Using Control Flow Graph Matching. In Conference
on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA) (2006).

[21] CHRISTODORESCU, M., JHA, S., SESHIA, S., SONG, D., AND
BRYANT, R. Semantics-Aware Malware Detection. In IEEE Symposium
on Security and Privacy (2005).

[22] COZZIE, A., STRATTON, F., XUE, H., AND KING, S. Digging For
Data Structures . In Symposium on Operating Systems Design and
Implementation (OSDI) (2008).

[23] EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., AND SONG, D.
Dynamic Spyware Analysis. In Usenix Annual Technical Conference
(2007).

[24] Kangkook Jee, ShadowReplica: Efficient Parallelization of Dynamic
Data Flow Tracking

[25] G. Edward Suh, Jaewook Lee, Secure Program Execution via Dynamic
Information Flow

[26] C. Phillips and L. Swiler. A graph-based system for network vulnerabil-
ity analysis. In ACM New Security Paradigms Workshop, pages 71-79,
1998.

[27] O. sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated
generation and analysis of attack graphs. In Proceedings of IEEE Sym-
posium on Security an Privacy, May 2002.

[28] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs. In
Proceedings of the 15th IEEE Computer Security Foundations Workshop,
Nova Scotia, Canada, June 2002.

[29] Angelos Keromytis, Transparent Computing Proposal, Innovation Infor-
mation Office, DARPA.

