
On The Time Complexity of Moving Turing Machines

Huaiin Chen
huailin AT gmail DOT com

Abstract
A main objective of theoretical computer science is to under-
stand the time complexity needed to solve complex compu-
tational problems, and to understand the relations between
different models of computation.
In this paper, we extend Alan Turing’s theoretical model
and discuss the time complexity of a moving turing ma-
chine, and conclude that time complexity is relative when
machines are under different inertial frames of references.
The time complexity of a moving turing machine to solve
a problem is strongly correlated to Lorentz factor and the
verification complexity. When its speed is close to the light
speed, a moving machine can use a polynomial time to solve
an intractable problem.

Keywords Turing Machine, Time Complexity, Lorentz
Factor, P, NP.

1. Turing Machine
First proposed by Alan Turing in 1936, The Turing Ma-
chine(TM) is a powerful computing model, which can do
everything that a real computer can do [1]. A single tape Tur-
ing machine can be formally defined as a 7-tuple as below
[2, 3]:

M = 〈Q,Γ, b,Σ, δ, q0, F 〉
where
Q is a finite, non-empty set of states
Γ is a finite, non-empty set of tape alphabet symbols
b ∈ Γ is the blank symbol (the only symbol allowed to occur
on the tape infinitely often at any step during the computa-
tion)
Σ ⊆ Γ \ {b}is the set of input symbols
δ : (Q \ F) × Γ → Q × Γ × {L,R} is a partial function

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1. Alan Turing’s Machine

called the transition function, where L is left shift, R is right
shift. (A relatively uncommon variant allows ”no shift”, say
N, as a third element of the latter set.)
q0 ∈ Q is the initial state
F ⊆ Q is the set of final or accepting states.

2. Time Complexity
A main objective of theoretical computer science is to under-
stand the amount of time and space needed to solve complex
computational problems, and to understand the relations be-
tween different modes of computation.
Assume M be a deterministic Turing machine, the time com-
plexity of M on input w is the total number of state transi-
tions, or steps, the machine makes before it halts.
A standard convention is to call an algorithm ”easy” if it
runs in polynomial time. We denote by P the class of deci-
sion problems that are solvable in polynomial time. We de-
note by NP the class of NP decision problems. NP can be
defined as the set of decision problems that are solvable in
polynomial time by a non-deterministic Turing machine.
The P =?NP problem has been open since the early 1970s.
It was essentially first mentioned in a 1956 letter written
by Kurt Gdel to John von Neumann [4]. Informally, it asks
whether every problem whose solution can be quickly veri-
fied by a computer can also be quickly solved by a computer
[5, 6].
In this paper, We introduce inertial frame reference onto
Alan Turing’s theoretical model and discuss the time com-

Figure 2. TM with Light-Clock

plexity of a moving turing machine, and conclude that the
time complexity is relative when machines are under dif-
ferent inertial frames of references. The computing time
complexity of a moving turing machine is tightly correlated
to Lorentz factor and the verification complexity. When its
speed is close to the light speed, a moving machine can use
a polynomial time to solve an intractable problem.

3. Turing Machine under Inertial Frames
We extend Alan Turing’s definition to 9-tuple:

M = 〈R,C,Q,Γ, b,Σ, δ, q0, F 〉 (1)

where R and C are two new elements:

• R is an inertial frame reference that this TM belongs to
• C is the light-clock that is responsible for driving the

TM’s read/write head.

As figure 2 shows, for an TM, it contains an Einstein light-
clock C and the computing read/write head is driven by the
light-clock. Every tick means that the machine moves one
step. For the clock, we have a blip of light bouncing back and
forth between two mirrors facing each other. We position a
photocell at the upper mirror, so that it catches the edge of
the blip of light. The photocell clicks when the light hits it,
and this regular series of clicks drives the clock.
Every time when the clock moves one click, the control state
part of the Turing Machine will move one step–change state;
move to left, right or stay.

Definition 3.1. Step
A step of a TM machine is equal to a tick of its light-clock.
And vice visa.

Definition 3.2. Time Complexity
Suppose an M with light-clock be a deterministic Turing
machine that halts on all inputs. The time complexity of M
is the function f : N → N , where f(n) is the maximum
number of ticks that M spends on an input of length n.

4. On the Relativity of Time Complexity
In this section, we discuss about the time relations among
Turing Machines under different frame of references.

Figure 3. TMs with different references

Figure 4. TMs with different references

As shown in figure 3 and 4, we consider that there are two
Turing Machines, TM1 and TM2, where

1. TM1 is at rest under a frame of reference R1;

2. TM2 moves at speed V under a frame of reference R2;

From Einstein’s relativity theory, we can have that the time
(∆t) between two ticks in turing machine TM2, is longer
than the time (∆t) between these ticks in TM1. In other
words, TM2 light clock is slower than TM1 light clock.

∆T2 = γ ∗∆T1

Where γ is Lorentz factor.

γ = 1√
1− v2

c2

We conclude TM2 moves fewer steps than TM1 does:

Theorem 1.

STEPSTM2 =
1

γ
∗ STEPSTM1 (2)

In the rest of this paper, we will construct a theoretical
computing scenario. As illustrated in figure 5 and 6, there are
three TMs to be involved. Two of them are at rest while the
another TM is moving with the speed of v. We will discuss
the corresponding time complexity issues when these three
TMs are under different inertial frames of references.

1. TM1 and TM1́ are at rest in the same reference.

2. TM2 is moving with speed v toward TM1́ .

3. There is an unlimited oracle tape in the middle. Whenever
TM1 or TM1́ accepts or rejects a string, print results on
the corresponding places on the oracle tape before halts.

4. Every TM machine’s internal tape has a same input string
w, which is a decidable problem.

5. Every TM machine has a read/write head for internal tape
and a read/write head for outside

6. TM1 and TM1́ are the exactly clones, able to decide w
with time ticks of t.

7. The distance between TM1 and TM1́ is vt

Now lets define the TMs behavior as below:
TM1(1́) = On input string w :
{
Step 1 : Run with w
Step 2 : Print result on its internal tape
Step 3 : Print result on oracle tape
Step 4 : Halt
}

TM2 = On input string w :
{
Step 1 : Check oracle tape
Step 2 : Repeat step 1 if no result available
Step 3 : V erify result on its internal tape
Step 4 : Print result on its internal tape
Step 5 : Halt
}
Suppose that the time complexity for TM1́ to decide(accept
or reject) string w is t, where t = f(n), n is the length of w.
Then we can formally obtain the time complexity of the
moving TM2 as follows:
For step 1 and step 2, the time complexity or steps will be
costed is:

1
γ ∗ f(n) =

√
1− v2

c2 ∗ f(n)

For step 3, assume that we have an v(n) time complexity for
verifying an algorithm for language w.
The time complexity for the moving machine TM2 is:

Theorem 2. The time complexity for a moving TM is:√
1− v2

c2 ∗ f(n) + v(n)

Figure 5. TMs with different references

Figure 6. TMs with different references

Where

1. f(n) is the time complexity of the TM at rest frame for
deciding a string w.

2. v(n) is the time complexity of the TM for verification an
algorithm.

5. Discussion
1. The time complexity for a moving TM is correlated to its

moving speed v and the length n of the computing string
w.

2. When the moving machine’s speed is close to the light
speed, its time complexity for w is equal to the verifica-
tion complexity when under rest.

3. If a moving TM wants to have a constant amount of steps
to finish the reading results from the oracle tape,√

1− V 2

C2 ∗ f(n) = K

Then, it means, the TM need move as fast as below:

Theorem 3.

V =

√
1− K2

f(n)2
∗ C (3)

Then the time complexity of the moving TM for w is:
K+v(n). When v(n) is big enough, the time complexity of
the moving TM is simply equal to v(n).
In other words, the computing complexity to decidew for
a moving TM2 is equal to the verification complexity of
TM1 at rest.

Acknowledgments
References
[1] Turing, A. M. (1937) [Delivered to the Society November

1936]. ”On Computable Numbers, with an Application to the
Entscheidungsproblem” (PDF). Proceedings of the London
Mathematical Society. 2 42. pp. 230-265.

[2] Sipser, Michael: Introduction to the Theory of Computation,
Second Edition, International Edition, page 270. Thomson
Course Technology, 2006.

[3] Hopcroft, John E.; Rajeev Motwani; Jeffrey D. Ullman (2001).
Introduction to Automata Theory, Languages, and Computa-
tion (2nd ed.). Reading Mass: AddisonWesley. ISBN 0-201-
44124-1. Distinctly different and less intimidating than the first
edition.

[4] Juris. ”Gdel, von Neumann, and the P = NP problem” (PDF).
Bulletin of the European Association for Theoretical Computer
Science 38: 101-107.

[5] Fortnow, Lance (2009). ”The status of the P versus NP prob-
lem” (PDF). Communications of the ACM 52 (9): 78-86.
doi:10.1145/1562164.1562186.

[6] Cook, Stephen (1971). ”The complexity of theorem proving
procedures”. Proceedings of the Third Annual ACM Sympo-
sium on Theory of Computing. pp. 151-158.

